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Abstract— Computer and data scientists are increasingly 
tasked with analyzing data growing at unprecedented rates. 
These data frequently involve a high level of dimensionality. In 
this work, we present a novel method for dimension reduction 
that combines statistical scoring with graph theoretical filtering 
to distill salient features for machine learning. We apply this 
method to the timely problem of detecting epigenetic biomarkers 
in DNA methylation data. 
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I. INTRODUCTION 
Technological advancements over the past decade have 
resulted in an explosion of data collection techniques. A rapid 
increase in the number of active sensors and the rise of the 
internet of things have combined to create exponential growth 
in data production across the world, with recent estimates 
putting the amount of data produced daily at 2.5 quintillion 
bytes [1]. Further complicating the matter, many of these data 
sets involve a high degree of dimensionality, especially in 
problem areas such as bioinformatics, image processing, and 
text translation. The development of effective dimension 
reduction techniques is therefore key for researchers in today’s 
world of Big Data.  

Dimension reduction techniques can be divided into two 
general classes, feature selection and feature extraction [2]. 
Feature extraction consists of transforming known features into 
a lower dimensional space. Examples include principal 
component analysis, independent component analysis, and 
machine learning methods such as autoencoders. 
Unfortunately, mapping to an abstract feature space makes it 
difficult to interpret data characteristics and the transform itself 
can be an expensive operation. Feature selection, on the other 
hand, consists of selecting a subset of known features without 
transformation. These techniques can be further divided into 
two broad categories: filters and wrappers. Filters are 
independent of downstream model selection and include 
classical statistical methods as well as newer approaches such 
as Markov Blanket Filtering [3]. Although efficient to 
implement, filters are generally unable to capture high level 
dependencies between features. Wrapper methods such as 

forward feature selection [4] perform selection based on 
classification accuracy across subsets of features using a 
preselected learning algorithm. As such, wrappers tend to be 
computationally expensive. 

In previous work, we described a conceptual framework for the 
analysis of complex data sets that combines machine learning 
and graph analytics techniques [5]. This modular approach to 
compound analytics, illustrated in Figure 1, seeks to leverage 
potential synergies to reveal subtle interactions and patterns 
that might otherwise remain hidden to a singular modality. As 
part of our framework, we have developed a novel method for 
feature selection that combines a statistical scoring function 
with a filter derived from a classic graph covering problem, 
minimum dominating set. By using a graph based approach, 
we maintain computational efficiency while considering high 
level interactions between features overlooked by traditional 
filtering approaches. 

 
Figure 1. A framework for knowledge discovery. Graph algorithms and 
machine learning can be tailored to fit processing pipelines for a wide variety 
of applications. 

262

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00050

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:46:49 UTC from IEEE Xplore.  Restrictions apply. 



In this paper we present our method, together with the results 
of its application to the problem of detecting putative 
biomarkers in epigenetic data. As we shall see, testing shows 
that our method is capable of identifying a small set of core 
biomarkers (features) that allow for classification of tissue 
samples as case vs. control with high fidelity in a variety of 
diseases/conditions. The paper is organized as follows. In the 
next section, we provide some background on DNA 
methylation and its role in human disease. We then discuss our 
tools and methods for feature selection. In a fourth section, we 
present the results of our testing on publicly available data for 
osteoarthritis, breast cancer, liver cancer, and schizophrenia. 
Finally, we close with a brief summary.  

II. DNA METHYLATION AND HUMAN DISEASE 
When the Human Genome Project undertook its mission to 
map the entire DNA sequence of the human genome in 1990, it 
carried the hope of transforming our understanding of biology. 
In 2001 it was even chronicled in an episode of NOVA on PBS 
entitled “Cracking the Code of Life [6].” While certainly 
representing a great leap forward in our fundamental 
knowledge of genetics, it has become clear since its completion 
in 2003 that there are mechanisms at play in the actual 
expression of genes that go far beyond the physical 
arrangement of the underlying genetic code. While researchers 
have identified a variety of these epigenetic mechanisms, 
perhaps the most studied and well understood is DNA 
methylation. 

DNA methylation generally occurs when a methyl group is 
added at the 5’ position of the cytosine ring, transforming the 
cytosine to 5-methylcytosine. Usually this occurs at CpG 
dinucleotides, although non-CpG methylation has been seen to 
occur more frequently in specific contexts such as neural 
development and in embryonic stem cells [7]. The process is 
believed to be regulated by DNA methyltransferases including 
DNMT1, DNMT3a, and DNMT3b. DNMT1 works to maintain 
methylation patterns by recognizing and copying them to the 
unmethylated daughter strands during DNA replication. 
DNMT3a and DNMT3b are thought to be responsible for de 
novo methylation events. Mutations in the DNMT3b gene have 
been found to be responsible for ICF (Immunodeficiency, 
centromeric instability, facial anomalies) syndrome [8], while 
mutations to any of DNMT1, DNMT3a, or DNMT3b have 
been found to be embryonically lethal in mice [9, 10].  

In humans, some 70% of CpG dinucleotides throughout the 
genome are methylated [11]. At the same time, there are 
genomic regions with a heavy concentration of CpG content 
that can be found in the promoter regions of many genes. The 
cytosines in these CpG rich regions, termed CpG islands, tend 
normally to be unmethylated with exceptions in the context of 
the inactive X chromosome [12] and imprinted genes [13, 14]. 
Aberrant methylation patterns have been found to play a role in 
many diseases. In particular, it has been shown to play a dual 
role in many forms of cancer through both a pattern of global 
hypomethylation, allowing aberrant overexpression and 
ensuing oncogenesis, together with hypermethylation of CpG 
islands in the promoter regions of tumor suppressor genes, 
leading to their silencing [15-17]. These discoveries provide a 
compelling impetus for the development of methods for the 

discovery of novel methylation biomarkers capable of 
differentiating between healthy and diseased states. Such 
markers could then potentially be used in screening and 
diagnosis, and as guides for the selection of therapeutic targets 
for DNA-demethylating agents. 

III. METHODS AND TOOLS 
In this section, we describe our toolchain for the analysis of 
methylation data (as illustrated in Figure 2). 

 

 
Figure 2. An illustration of our workflow for methylation analysis. 

A. Statistical Scoring 
To begin, each methylation site is assigned a merit score by 
means of the following function: 

 

Where  and  are the mean and standard deviations, 
respectively, of the indicated sample group and  is a constant 
used as a tuning factor with . We start with  
and adjust it downward as necessary until we are able to 
identify sites with positive merit scores. 

Ultimately the goal is to be able to identify sites that are 
capable of providing a clean separation between case and 
control. To that end, we next calculate inter-sample scores. The 
score comparing sample  and sample  is assigned via: 

 

This metric is designed in such a way so as to favor 
homogeneous over heterogeneous sample pairs. Thus, case-
case pairs and control-control matched pairs will tend to 
receive higher scores than mismatched case-control pairs. 

B. Dominating Set Filter 
Graph theoretical algorithms have found a wealth of 
applications across domains. The maximum clique problem for 
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example has been used to mine putative gene networks 
associated with disease [18] and to detect fraudulent trading 
patterns in financial markets [19]. Covering problems such as 
vertex cover and dominating set have been used in applications 
ranging from image processing [20] to wireless ad-hoc routing 
[21]. These minimum covering problems in particular focus on 
finding a reduced set of nodes or edges that in some way 
capture the global structure of the network.  

Formally, let ( , )G V E=  be a simple, undirected graph with 
vertex set V and edge set E . A dominating set for G is a set of 
vertices S V⊆  such that for all u V∈  either u S∈  or there 
exists some v S∈ with ( , )u v E∈ . The minimum dominating 
set problem (MDS) then seeks to find, for a given input graph, 
a dominating set of minimum cardinality. Although MDS is 
NP-hard we have found in practice our implementation can 
reliably solve instances for graphs with thousands of nodes 
derived from real-world data in a few seconds. 

Our scoring function has the potential to return a large number 
of sites with positive merit scores. We would like to be able to 
winnow these sites down to those with the best potential as 
discriminatory markers. In such situations, we apply a filter 
based on a variant of MDS, namely red-blue dominating set, in 
which the vertices are first colored red or blue, and then we 
seek the smallest set of red vertices that dominate the blue. 

We first construct a bipartite graph in which one partite set 
contains red vertices representing sites and the other partite set 
contains blue vertices representing samples. For each site, we 
calculate the p-value of its observed methylation level for each 
sample. This p-value is calculated using the distribution of the 
levels at that site across all the group samples of the same type, 
be it case or control. A site is said to cover a sample and an 
edge is added between them in the graph if the p-value is 
greater than .05. This culls from the tails of the distributions 
and leaves us with observed methylation values that are in 
some sense “normal” for the sample within its group at each 
site. 

Unfortunately, a straight application of minimum dominating 
set might sacrifice sites with high merit scores for those with 
lower discriminatory power based solely on the size of the 
returned set. To guard against this, we begin with the top 
scoring site and iteratively add the next highest scoring site 
until we obtain a dominating set. We then take a minimum set 
that dominates the graph from among this collection. In order 
to visualize the effectiveness of our reduced set in 
discriminating between case and control samples, we examine 
the distribution of the inter-sample scores. 

C. Machine Learning for Classification 
For the task of classification of samples as case or control 
(healthy vs. diseased), we employed boosted decision trees 
trained on the reduced feature set. Our models were 
implemented in Python using the popular sklearn package’s 
built-in AdaBoost classifier. In all experiments described in the 
next section, we used 30 estimators and employed five-fold 
cross validation. 

IV. EXPERIMENTAL RESULTS 
We applied our method to five sets of publicly available data 
obtained from the Gene Expression Omnibus (GEO). Datasets 
were chosen to span a variety of diseases. We selected only 
those containing a relatively large number of case and control 
samples. All the sets are from the Illumina Infinium 
HumanMethylation450 BeadChip array, often referred to as the 
Illumina 450k methylation array. The set of probes on the 
HM450 BeadChip targets over 450 thousand CpG sites across 
the human genome, covering not only promoters, but also gene 
bodies and untranslated regions. The data sets and some details 
of the results are summarized in Table 1. 

A. Osteoarthritis 
According to the Arthritis Foundation, osteoarthritis is the most 
common chronic condition of the joints. Sometimes called 
degenerative joint disease, it has no specific cause, but is 
influenced by several factors including age, occupation, 
obesity, injury and overuse. As well as having a known genetic 
component, several studies have been conducted that point to 
epigenetic mechanisms such as DNA methylation [22, 23] and 
histone modifications [24, 25]. The GEO series GSE63695 
consists of methylation data from chondrocyte DNA samples 
drawn from the hip cartilage of 23 patients with osteoarthritis, 
knee cartilage of 73 osteoarthritis patients, and 21 hip samples 
from healthy controls. For the purpose of this study, we 
discarded the data from the knee cartilage in order to avoid 
possible confounding issues due to a mixture of tissue types. 

With  = 1, we identified 777 sites with positive merit scores 
for separation. The top scoring sites mapped to the genes 
ALX4, ANK1, and ARNT2. Differential expression of, or 
differential methylation in the promoter regions for, each of 
these genes has been indicated in the literature as playing a role 
in the development of osteoarthritis [26-28]. Our dominating 
set filter identified a set of three methylation sites that covered 
all samples. As seen in Figure 3, the homogeneous sample 
pairs exhibit a strong tendency to cluster toward the high end 
of the inter-sample scores, yielding a readily apparent 
separation. Training our classifier on this dataset achieves a 
mean accuracy of 0.933. 

 

 
Figure 3. Stacked histogram of Osteoarthritis inter-sample scores. In this and 
following figures, green and gold indicate scores for homogeneous control-
control and case-case pairs respectively. Black is scores for mismatched case-
control pairs. Note that homogeneous scores cluster significantly to higher 
values. 

264

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:46:49 UTC from IEEE Xplore.  Restrictions apply. 



 

B. Breast Cancer 
Breast cancer in women accounts for one in ten of all new 
cancers diagnosed worldwide annually [29]. As with all 
cancers, DNA methylation is known to play a large role in its 
progression. A host of studies have been undertaken in efforts 
to improve our understanding of that relationship. For example, 
see [30-32]. Series GSE66695 consists of methylation data 
drawn from 40 normal and 80 breast cancer tissue samples. 

In the breast cancer data, our scoring metric produced 12,107 
sites with positive merit scores for  = 1. The top scoring sites 
mapped to ZFP106, MXRA7, and the tumor suppressor gene 
ST7. MXRA7 has been found to be differentially expressed in 
a number of cancers [33]. We were able to uncover a 
dominating set consisting of five sites separating the data. The 
distribution of inter-sample scores shows a near total 
separation of the homogeneous and heterogeneous sample 
pairs, lending strong evidence to support the utility of our five 
sites as biomarkers for breast cancer. See Figure 4. This is 
further supported by the mean accuracy of 0.95 achieved by 
our classifier. 

 

 

Figure 4. Distribution of Breast Cancer inter-sample scores. 

C. Liver Cancer 
The most common type of primary liver cancer is 
hepatocellular carcinoma (HCC). It ranks as the fifth most 
common type of cancer globally and is responsible for the third 
most deaths due to cancers. Despite its high global rankings, 
the distribution of cases is strongly centred in sub-Saharan  

 

Africa and Eastern Asia with China accounting for more than 
50% of all cases worldwide [34]. GSE54503 is made up of 
methylation data drawn from 66 pairs of hepatocellular 
carcinoma (HCC) liver tumors and adjacent non-tumor tissues. 

With  = 1, our scoring produced a set of 30,576 methylation 
sites having positive merit scores. Dominating set filtering 
produced a set of four probes covering all samples. These sites 
map to the genes KCNQ2, C1orf70, GRASP, and PTPRN2. 
All four can be found in the literature as being involved in 
HCC, see [35-37]. As can be seen in Figure 5, the distribution 
of inter-sample scores again provides a nearly ideal separation 
between like and mixed sample pairs. Training on this set of 
four features achieved a mean classification accuracy of 0.932. 

 
Figure 5. Distribution of HCC inter-sample scores. 

D. Schizophrenia 
GSE61107 comes from a genome-wide methylation analysis of 
brain tissue in schizophrenia patients [38]. It contains data 
drawn from frontal cortex post-mortem tissue from 24 
individuals diagnosed with schizophrenia and 24 controls. The 
tissue samples themselves were provided by the Human Brain 
and Spinal Fluid Resource Centre. 

With  = 1, only four sites were identified with positive merit 
scores. Three of these sites mapped to TNRC6C, ZNF787, and 
HOXA13, while the fourth mapped to an intragenic region on 
chromosome 6. HOXA13 appears repeatedly as a potential 
biomarker for schizophrenia in the literature. See for example 
[39-41]. While the separation we obtain in this case is not to 
the level observed with the cancer datasets, we still observe a 
marked upshift in the distribution of homogeneous inter-

Table 1. A summary of the data sets and results of our experimental testing.  The mean accuracy reported is from classification testing using five-fold cross 
validation. 

GEO Series 
Number 

Disease Case 
Samples 

Control 
Samples 

Number of 
Original 
Features 

Features After Scoring 
and Dominating Set 

Filtering 

Classification 
Mean Accuracy 

GSE63695 Osteoarthritis 23 21 485,512 3 0.933 
GSE66695 Breast Cancer 80 40 485,577 5 0.95 
GSE54503 Liver Cancer 66 66 485,577 4 0.932 
GSE61107 Schizophrenia 24 24 485,577 4 0.876 

GSE40360 Multiple Sclerosis 28 19 481,917 7 0.871 
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sample scores as can be seen in Figure 6. As to be expected, 
our classifier does not perform quite as well on this set, but still 
achieves a mean accuracy of 0.876. 

 

 
Figure 6. Distribution of Schizophrenia inter-sample scores. 

E. Multiple Sclerosis 
GSE40360 originated from a study seeking to identify 
differences in methylation patterns in pathology-free regions of 
brain tissue in persons affected by multiple sclerosis [42]. 
Drawn from brain bank samples of normal appearing white 
matter dissected from the frontal lobe, it consists of post-
mortem samples from 28 multiple sclerosis patients as well as 
19 healthy controls. This particular set turned out to be quite 
dirty, with numerous missing values. As such, an initial 
preprocessing step was required. We chose to discard records 
for all probes missing entries for a sample, leaving us with data 
for 460,421 probes. 

This is the only one of the five datasets that returned no 
positive scores for a tuning factor of 1. Reducing to , 
we obtained a set of seven sites with positive merit scores. As 
can be seen in figure 7, we start to see decreased separation in 
the distribution commiserate with the need to lower . Notice, 
however, that the homogeneous sample pairs still produce 
scores that fall primarily in the top third of the distribution; our 
classifier still performs well with a mean accuracy of 0.871. 

 

 

 
Figure 7. Distribution of Multiple Sclerosis inter-sample scores. 

V. CONCLUSION 
In this paper we described a novel method for dimension 
reduction that employs a statistical scoring function together 
with a red-blue dominating set filter. This method again 
reinforces the advantages of our conceptual framework 
encouraging a compound analytics approach combining both 
graph algorithms and traditional machine learning. We 
demonstrated the efficacy of our method by using it for 
biomarker detection in DNA methylation data. 

Extracting low-dimensional feature sets for the training of 
boosted decision tree models for the classification of tissue 
samples from five different diseases demonstrated that the 
method is capable of identifying a small set of training features 
allowing for classification at a high fidelity with average mean 
accuracies ranging from .871 to .95 when testing with five-fold 
cross validation. 
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