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Abstract—Computing various global and local topological
graph features is an important facet of data analysis. To do
so robustly and scalably requires efficient graph algorithms
that either calculate topological features exactly or approximate
topological features accurately. For this reason researchers de-
veloping distributed graph analytic algorithms desire generated
graph benchmarks that share the challenging characteristics of
real-world graphs (small-world, scale-free, heavy-tailed degree
distribution) with efficiently calculated ground truth to the
desired ouput.

Given two small scale-free graphs with adjacency matrices A
and B, their Kronecker product graph [1] has adjacency matrix
C = A ⊗ B. Such Nonstochastic Kronecker graphs are highly
compressible, and many expensive global graph calculations
can be computed in sublinear time, with local graph statistics
computed exactly in linear time, both from a sublinear amount of
storage. Therefore, this class of graphs are likely of high interest
to those pursuing data analysis tasks that incorporate diverse
graph-based features.

Here, we extend previous results regarding local triangle
statistics and demonstrate that ground truth Kronecker formulas
apply to: (i) some distance-based vertex centrality metrics (vertex
eccentricity and closeness centrality), (ii) internal and external
edge density of communities. Moreover, we demonstrate several
scaling laws apply that allow researchers to have control over
various ground truth quantities.

I. INTRODUCTION

Graph analytics have widespread applications to many sci-

entific fields such as computer science, biology, and social

science. Computing or approximating graph analytics can be

used to decorate graphs entities (vertices and edges) with a

diverse class of local topological features, such as (i) central-

ity scores [2]–[4], (ii) pattern statistics [5], (iii) community

membership [6], and (iv) roles [7]. Incorporating various local

graph topolical properties as features in machine learning

(ML) tasks is also an important facet of applying ML to

massive datasets containing relational data.

When implementing graph algorithms, a standard technique

for validation is to compare the results to a known trusted

implementation. This process is useful in many cases but is not

always possible. When a new problem is being solved or when

new algorithms allow solving problems larger than previously
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possible, all validation must occur at a much smaller scale

than the desired use case, which is an important step but often

not satisfactory for HPC validation.

A proposed solution to this problem is to use nonstochastic

Kronecker graphs as validation tools [8]. A Kronecker graph
GC has an adjacency matrix that is a Kronecker product [1],

[9], [10] of two much smaller factors, C = A⊗B =⎛
⎜⎜⎜⎝

A11B A12B · · · A1,nA
B

A21B A22B · · · A2,nA
B

...
...

. . .
...

AnA,1B AnA,2B · · · AnA,nA
B

⎞
⎟⎟⎟⎠ ,

Graph generation using nonstochastic Kronecker products

can be contrasted with the stochastic Kronecker products used

in the ubiquitous R-MAT generator [12]. R-MAT generators

are used to produce the graphs used for various graph bench-

marks, such as the Graph500 [13] and Graph Challenge [14],

[15]. When using an R-MAT generator, exact graph properties

cannot be determined until generation is complete. Upon

generation, large graphs take very large amounts of space if

they are to be stored for reuse.

The use case for nonstochastic Kronecker generators is

different from that of stochastic generators, and the former will

not replace the latter. The nonstochastic Kronecker generators

are appropriate for validation of algorithms and generation

of graphs with certain properties at different scales. The

generated graphs do have some peculiar properties, such as the

lack of vertices with large prime degrees. Stochastic generators

are appropriate for fast generation of graphs with certain

properties, in expectation.

Several previous works demonstrate useful Kronecker for-

mulas and bounds for ground truth graph statistics, including

degree distribution, triangle distribution, graph diameter, and

eigenvalues [8], [11], [16], [17]. This paper extends these

works by deriving efficient formulas for additional ground

truth quantities that can be computed for nonstochastic Kro-

necker products. In general, for a graph with |EC | edges,

suppose a desired graph analytic f(C) costs O(|EC |p). If a

simple Kronecker formula of the form

f(C) =
∑
s

(gs(A)⊗ hs(B))
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with a low number of terms exists, then a data structure

requiring O(|EC |p/2) storage can produce ground truth with

O(|f(C)|+ |EC |p/2) cost. This means global scalar quantities

(such as a global triangle count) are computed sublinearly, in

O(|EC |p/2) time, and local quantities (such as triangle counts

at edges) are produced in linear time.

Viewing these ground truth quantities from a slightly dif-

ferent perspective, we can generate graphs with desired char-

acteristics at different scales. We summarize several important

scaling laws in the table below (note that the assumptions on

A and B sometimes differ slightly to attain the presented law).

Quantity Scaling Law

Vertices nC = nAnB

Edges mC = 2mAmB

Degree dC = dA ⊗ dB

Vertex Triangles tC = 2tA ⊗ tB
Edge Triangles ΔC = ΔA ⊗ΔB

Global Triangles τC = 6τAτB
Clustering Coeff. ηC(p) � 1

3ηA(i)ηB(k)
Vertex Eccentricity εC(p) = max{εA(i), εB(k)}

Graph Diameter max{diam(GA), diam(GB)}
# Communities |ΠC | = |ΠA||ΠB |
Internal Density ρin(C) � 1

3ρin(A)ρin(B)
External Density ρout(C) � 4ρout(A)ρout(B)

Our contributions are summarized as follows:

(a) We provide an open-source distributed asynchronous im-

plementation that reads two factor graphs A and B from

file and efficiently produces the nonstochastic Kronecker

graph C = A⊗B.

(b) We extend the results in [11] to derive Kronecker formu-

las for vertex and edge triangle participation in the case

of self loops on every vertex in the factors. These results

yield linear computation of ground truth local triangle

counts from a sublinear amount of memory.

(c) We derive scaling laws for vertex and edge clustering

coefficients that demonstrate vertex clustering coefficients

are controllable, yet edge clustering coefficients are not.

(d) We derive Kronecker formulas and scaling laws for graph

distance, diameter, eccentricity, and closeness centrality.

These formulas yield linear computation of ground truth

from a sublinear amount of memory for every vertex in all

4 of these analytics except for closeness centrality, where

a subset of closeness centrality scores can be computed

efficiently from a compressed format.

(e) We derive Kronecker formulas and scaling laws for in-

ternal/external community edge counts and edge density,

which are both controllable, under reasonable assump-

tions.

(f) We discuss several advantages and disadvantages we have

observed regarding using nonstochastic Kronecker graphs

as various classes of benchmarks for massive-scale graph

analytics.

II. PRELIMINARIES

Let G(V, E) be a set of n := |V| vertices and |E| edges,

pair-wise relationships between members of V of the form

(i, j) ∈ E , where i, j ∈ V . We say G is undirected if (i, j) ∈ E
implies (j, i) ∈ E for every (i, j) (and G is directed if this

doesn’t hold for a single edge). An edge of the form (i, i) ∈ E
is a self loop.

Let B = {0, 1}. The matrix A ∈ B
n×n is an adjacency

matrix representing G if Aij = 1 for each (i, j) ∈ E and

Aij = 0 for each (i, j) �∈ E . Given an adjacency matrix A, we

use GA, VA, and EA, to represent the associated graph, vertices,

and edges, respectively. Additionally, we use a subscript A
for many other symbols referring to properties of GA (e.g.

nA = |VA|).
A. Algebraic Properties of Kronecker Products

Matrices formed by Kronecker products are block structured

and we define some convenience functions to write the index

maps compactly. For a block-structured array with block-size

n, we define functions that, for a given global index i, retrieve

the block number, αn(i), and the intra-block index βn(i).

αn(i) = �(i− 1)/n�+ 1,

βn(i) = [(i− 1)%n] + 1.

We drop the subscript n when it is clear from context. The

inverse of i→ (αn(i), βn(i)) is

γn(x, y) = (x− 1)n+ y,

in the sense that i = γn(αn(i), βn(i)).

Def. 1. (Kronecker Product [1], [9], [10]) Let A ∈ R
mA×nA

and B ∈ R
mB×nB . The Kronecker Product of A and B is

(A⊗B) ∈ R
(mAmB)×(nAnB) and has entries

(A⊗B)pq =
(
AαmB

(p),αnB
(q)

)(
BβmB

(p),βnB
(q)

)

for 1 ≤ p ≤ (mAmB) and 1 ≤ q ≤ (nAnB), or, equivalently,

(A⊗B)γmB
(i,k),γnB

(j,l) = AijBkl,

for 1 ≤ i ≤ mA, 1 ≤ j ≤ nA, 1 ≤ k ≤ mB , and 1 ≤ l ≤ nB .

Prop. 1. (Properties of the Kronecker Product [1], [9], [10])

(a) SCALAR MULTIPLICATION. For any a1, a2 ∈ R,

(a1a2)(A1 ⊗A2) = (a1A1)⊗ (a2A2).

(b) DISTRIBUTIVITY.

(A1 +A2)⊗A3 = (A1 ⊗A3) + (A2 ⊗A3) and

A1 ⊗ (A2 +A3) = (A1 ⊗A2) + (A1 ⊗A3).

(c) TRANSPOSITION. (A1 ⊗A2)
t = (At

1 ⊗At
2).

(d) MATRIX-MATRIX MULTIPLICATION. When nA1
= mA3

and nA2
= mA4

,

(A1 ⊗A2)(A3 ⊗A4) = (A1A3)⊗ (A2A4).
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Def. 2. (Haddamard Product [10]) Let A,B ∈ R
m×n. The

Haddamard Product of A and B is (A ◦B) ∈ R
m×n, with

(A ◦B)ij = AijBij

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Def. 3. (Standard Matrix and Vector Objects) Given
A ∈ R

nA×nA , OA is the matrix of all zeros and IA is the
identity matrix, both with the same size as A. Constant vectors
0A,1A ∈ R

nA , are the vector of all zeros, and the vector of

all ones, both of dimension nA.

We define some diagonal operators of square matrices

in terms of the Haddamard product so it is transparent in

Kronecker formulas we derive.

Def. 4. (Matrix Diagonal Operators and Self Loops) Given
A ∈ R

nA×nA , the matrix DA = IA ◦A is the diagonal entries

of A. The diagonal operator is diag(A) := (IA◦A)1A, a vector
in R

nA . Diagonal entries of DA that are nonzero represent self

loops in GA, when DA = IA we say A has full self loops, and
when DA = OA we say A has no self loops.

Now we recall several useful formulas regarding Haddamard

products.

Prop. 2. (Properties of the Haddamard Product [10]) In the
following, we implicitly assume that nA = nB and mA = mB

whenever A ◦B is present.
(a) COMMUTATIVITY. A1 ◦A2 = A2 ◦A1.
(b) SCALAR MULTIPLICATION. For any a1, a2 ∈ R,

(a1a2)(A1 ◦A2) = (a1A1) ◦ (a2A2).

(c) DISTRIBUTIVITY.

(A1 +A2) ◦A3 = (A1 ◦A3) + (A2 ◦A3) and

A1 ◦ (A2 +A3) = (A1 ◦A2) + (A1 ◦A3).

(d) TRANSPOSITION. (A1 ◦A2)
t = (At

1 ◦At
2).

(e) HADDAMARD-KRONECKER DISTRIBUTIVITY.

(A1 ⊗A2) ◦ (A3 ⊗A4) = (A1 ◦A3)⊗ (A2 ◦A4).

(f) DIAGONAL-KRONECKER DISTRIBUTIVITY. When
mA1 = nA1 and mA2 = nA2 ,

diag(A1 ⊗A2) = diag(A1)⊗ diag(A2).

III. AN HPC IMPLEMENTATION

In this section, we present our Kronecker generator for

use in HPC applications. To generate the Kronecker product

C = A ⊗ B, we replicate B across all processors. For

our purposes, we assume A and B are given as (unordered)

edge lists. Edges of A are evenly distributed across the R
processors. Let Ar ∈ R

nA×nA denote the adjacency matrix

containing only the edges in A assigned to processor r. Then

processor r is responsible for generating

Cr = Ar ⊗B,

and C =
∑

r Cr. This generation process requires

O(|EA|R−1 + |EB |) storage on each processor and

O(|EA||EB |R−1) time to generate the product graph.

Replicating A and B across all processors is not ideal, but

these adjacency matrices are typically very small relative to

the size of C. For instance, if |EA| ≈ |EB |, then |EC | ≈ 2|EA|2.

If edges are being stored, the processor responsible for gen-

erating an edge must then send it to the processor responsible

for its storage as determined by some mapping scheme. If

A and B were sorted and placed in a compressed sparse

row (CSR) structure, it would be possible for a processor

to efficiently generate only the edges it must store in some

cases, but this would be dependent on the method used to

distribute edges to processors. We make the generation of

Kronecker edges independent of the storage method of edges

so the approach is more modular.

Source code for the Kronecker generator is available as part

of HavoqGT [18], LLNL’s asynchronous graph library. Very

recently this approach was used to generate a trillion-edge

graph (whose factors where two Graph500 scale 18 graphs

with different random seeds) for validation purposes within a

CORAL2 benchmark. It was generated in under a minute on

1.57M cores of IBM BG/Q SEQUOIA at LLNL.

Rem. 1. (SCALING) This implementation has been useful for
our purposes of generating billion- to trillion-edge graphs with
ground truth on thousands to millions of processors. However,
it has a scalability problem and would not weakly scale to 1015

edge graphs on many millions of processors, if the factors
A and B are similar in number of edges. Assume we are
generating C with |EC | from A and B with |EA|, |EB | =
O(|EC |1/2). Because only the edges of A are distributed, we
can make use of only O(|EC |1/2) processors.

A simple solution with our current implementation is to fix
the size of B and let |EA| grow proportionally to |EC |.

A more general solution is given by distributing the edges
of both A and B. Let R1/2 := �R1/2� and partition the edges
of A into R1/2 parts and the edges of B into �R/R1/2� parts.
Having processor r generate

Cr = Ar%R1/2
⊗B�r/R1/2�,

we would use O(|EC |) processors and weak scaling is possi-
ble.

IV. TRIANGLE PARTICIPATION

In this section we show new formulas for how many

triangles reside at vertices and edges in the case where every

vertex has a self loop in both factors. Then we demonstrate

scaling laws for vertex and edge clustering coefficients. Lastly,

we discuss the ability to create subgraphs of Kronecker graphs

where ground truth triangle counts can be calculated in a

highly reliable fashion, which is a useful contribution for

a good-faith benchmark where the full Kronecker structure

would be less exploitable (either explicitly or implicitly).
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A. All Self Loops in Both Factors

In previous work [11], we derived formulas for triangle

participation at vertices/edges with self loops on any vertex

in a single factor (DA �= OA, but DB = OB), and extended

these results to the many types of directed graphs and labeled

graphs. Self loops in A provide the user with the ability to

locally tune triangle counts somewhat, while the design choice

of no self loops in B leaves fairly simple Kronecker formulas

(with a few terms). Here, we consider the important case where

both factors have self loops at every vertex, in order to create

the densest structure possible for Kronecker graphs.

1) Vertex Participation:

Def. 5. (Triangle Participation at Vertices) For adjacency
matrix A, triangle participation at vertices is represented by
tA ∈ R

nA , a vector that counts the number of undirected
triangles at each vertex. For A undirected with self loops, we
have

tA :=
1

2
diag

(
(A−A ◦ IA)3

)
.

Note that when A has no self loops, then tA = 1
2diag(A3).

The triangle participation at vertex i ∈ VA is t
(A)
i , or ti when

relation to A is clear from context.

We derive a variant of Thm. 1 from [11] and the proof is

in the appendix.

Cor. 1. (Triangles at Vertices with Full Self Loops) Let
A ◦ IA = OA, B ◦ IB = OB . Let both factors have self loops
for all vertices added in C = (A + IA) ⊗ (B + IB). The
number of triangles incident to p ∈ VC is

tp = 2titk + 3(tidk + didk + ditk) + ti + tk,

where ti (or tk) and di (or dk) are the triangle count and
degree, respectively, for vertex i ∈ VA (or k ∈ VB).

2) Edge Participation:

Def. 6. (Triangle Participation at Edges) Triangle participa-

tion at edges, is a nA × nA matrix

ΔA := (A−A ◦ IA) ◦ (A−A ◦ IA)2,
whose (i, j)-th entry is the number of triangles in which edge
(i, j) participates. When A has no self-loops, ΔA = (A◦A2).
The triangle participation at edge (i, j) ∈ EA is Δ

(A)
ij , or Δij

when relation to A is clear from context.

We derive a variant of Thm. 2 from [11] and the details of

the proof are also in the appendix.

Cor. 2. (Triangles at Edges with Full Self Loops) Let A ◦
IA = OA, B ◦ IB = OB . Let both factors have self loops for
all vertices added in C = (A+ IA)⊗ (B + IB). The number
of triangles incident to (p, q) ∈ EC is Δpq =

ΔijΔkl + 2(Δij +Δkl)
+Δij(dk + 1)δ(k, l) + Δkl(di + 1)δ(i, j)

+2(diδ(i, j) + dkδ(k, l) + 1),

where Δij (or Δkl) and di (or dk) are the triangle count at
edge (i, j) ∈ EA (or (k, l) ∈ EB) and degree for vertex i =
α(p) ∈ VA (or k = β(p) ∈ VB), respectively, and δ(a, b) = 1
if a = b and 0 otherwise.

B. Clustering Coefficients

Clustering coefficients of vertices and edges are useful

topological characterizations of graph neighborhoods [19].

Essentially, they are the ratio of observed triangles to the

maximum possible triangles, given the vertex degree(s), and

range from 0 (star- or tree-like neighborhood) to 1 (clique-

like neighborhood). We show the Kronecker formulas imply

scaling laws, which are only controlled in the case of vertex

clustering coefficients.

Def. 7. Clustering Coefficient [19] The clustering coefficient

at vertex i in GA is

ηA(i) =
2ti

di(di − 1)
.

The clustering coefficient at edge (i, j) in GA is

ξA(i, j) =
Δij

min {di, dj} − 1

Thm. 1. Let both factors have no self loops, or IA ◦A = OA,
IB ◦ B = OB . Consider any p ∈ VC , with i = α(p) and
k = β(p) such that ti, tk > 0 and di, dj ≥ 2. The vertex
clustering coefficients p satisfy

ηC(p) = θp ηA(i) ηB(k),

where
θp :=

(di − 1)(dk − 1)

didk − 1
,

which is in the interval [1/3, 1).

Proof. ηC(p) =

=
2tp

dp(dp − 1)
=

4titk
didk(didk − 1)

=
(di − 1)(dk − 1)

didk − 1

(
2ti

di(di − 1)

)(
2tk

dk(dk − 1)

)

= θp ηA(i) ηB(k).

The minimum possible value of θp is 1/3 and is realized for

di = dk = 2, where θp is monotonically increasing as either

di or dk increase, getting arbitrarily close 1 for large values.

Thus a controlled scaling law with vertex clustering coef-

ficients exists. The values of θp are even closer to 1 if self

loops are added to either or both factors. In fact θp = 1
is possible when self loops are in both factors and both

ηA(i) = ηB(k) = 1 (consider cliques for A and B).

Although a scaling law also exists for edge clustering

coefficients, there is not a controlled bound.

Thm. 2. Let both factors have no self loops, or IA ◦A = OA,
IB ◦ B = OB . Consider any (p, q) ∈ GC , with i = α(p),
k = β(p), j = α(q), l = β(q), such that Δij ,Δkl > 0 and
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di, dj , dk, dl ≥ 2. The edge clustering coefficients of (p, q)
satisfy

ξC(p, q) = φp,q ξA(i, j) ξB(k, l),

where

φp,q :=
(min(di, dj)− 1)(min(dk, dl)− 1)

min(didk, djdl)− 1
,

which is in the interval (0, 1).

Proof. The derivation is merely plugging in the definition and

reorganizing, similar to the proof of Thm. 1. To see that φp,q

can be arbitrarily small, consider the case where min(di, dj) =
di, min(dk, dl) = dl, yet min(didk, djdl) = didk, then

φp,q =
(di − 1)(dl − 1)

didk − 1
,

which approaches zero as dk and dj get large.

This shows if A and B have a relatively negative assortativ-
ity (more than expected high-degree vertices connected to low-

degree vertices [20]), then there will be several edges (p, q)
with much lower clustering coefficients than the product of

clustering coefficients of the associated edges (i, j) and (k, l)
from their factors. Although adding self loops can increase the

clustering coefficients of edges, it cannot produce a controlled

scaling law for all cases.

C. Probabilistic Edge Rejection

There are several potentially less-than-desirable features of

non-stochastic Kronecker generators that can be mitigated

in practice by probabilistic rejection of a small percentage

of the edges, without losing the ability to reliably calculate

the ground truth of local triangle statistics. These include

unrealistic degree and triangle degree distribution: no large

primes are possible; large holes in the distributions; excessive

ties for large values in the distribution (as observed in [16]

and [21]). More importantly, implicit or explicit use of the

Kronecker formulas can make the computation of global

triangle statistics sublinear in |EC | (and local statistics linear),

which is non-ideal for a good-faith benchmark. (For example,

due to the Kronecker structure a spectral method can efficiently

solve for large swathes of the eigenspace of C, which can be

used to great advantage in some graph analytics without the

algorithm developer even realizing it).

In this section, we describe a way to reliably generate

large graphs with ground truth that are not exactly Kronecker

graphs but have known local triangle statistics and improved

degree/triangle distributions.

Def. 8. Let hash(p, q) be a specific hash function mapping
EC −→ [0, 1]. For ν ∈ [0, 1], there exists a parameterized
family GC,ν of subgraphs of GC defined by: (p, q) ∈ GC,ν

only if
(p, q) ∈ GC and hash(p, q) ≤ ν.

If we pick a few specific values of ν, say

{1, 0.99, 0.95, 0.90}, then we are able to generate

GC ,GC,.99,GC,.95,GC,.9 jointly by storing the hash

values of every edge. Then an algorithm that efficiently

enumerates triangles in GC (such as that from [22], [23]) can

simultaneously enumerate triangles in GC,.99,GC,.95,GC,.9, as

triangle (p1, p2, p3) exists in GC,ν only if (p1, p2, p3) exists

in GC and

max (hash(p1, p2), hash(p1, p3), hash(p2, p3)) ≤ ν.

An individual triangle has probability ν3 of existing in GC,ν

and the expectation of vertex p’s triangle count is ν3tp. The

variance is more complicated due to dependence of edges in

overlapping triangles. For edges (p, q) ∈ GC,ν the expectation

of triangle count is ν2Δp,q .

The ground truth of local triangle statistics of GC are easily

checked via Kronecker formulas, and the ground truth of

GC,ν is computed by an algorithm that gets all local triangle

statistics of GC correct.

Clearly, bounds and expected values on the local triangle

counts are possible for subgraphs of Kronecker graphs, and

methods that use the counts for the Kronecker graph and

delete edges are also possible. So this is not an approach that

completely removes the possiblity of gaming the Kronecker

structure in benchmarking scenarios. However, it makes it so

accidental exploitation of the Kronecker structure is far less

likely.

V. DISTANCE-BASED CENTRALITY METRICS

Vertex centrality metrics are fairly ubiquitous graph-based

features. Distance-based metrics (such as eccentricity, close-

ness centrality, and betweenness centrality) are typically quite

expensive for large graphs. Direct calculation uses breadth-first

search from every vertex and has worst-case bounds O(|V||E|)
[24], although several heuristic and/or approximation tech-

niques exist for eccentricity [2] and closeness centrality [4].

Here, we demonstrate that Kronecker formulas exist that allow

efficient ground truth computation of eccentricity at all vertices

and closeness centrality at a subset of the vertices of Kronecker

product graphs GC .

First we demonstrate Kronecker formulas for minimum hop

length between two vertices and graph diameter, which we will

leverage to derive the Kronecker formulas for the centrality

metrics in the following sections.

Def. 9. Let every vertex in A have a self loop, or A◦IA = IA.
The unweighted distance, or hop count, from i to j in GA is

hopsA(i, j) := min
h∈N+

{etiAhej > 0}.

We refer to the full set of distances, hopsA(·, ·), as the hop

count matrix and use the notation hopsA(i, ·) to represent the
row vector of all of vertex i’s hop counts.

Notice etiA
hej > 0 implies etiA

h′
ej > 0 for any h′ > h

when all vertices of A have self loops.

Thm. 3. Let A ◦ IA = IA, B ◦ IB = IB , and C = A ⊗ B.
Then for (p, q) ∈ EC , the hop count from p to q in GC satisfies

hopsC(p, q) = max{hopsA(i, j), hopsB(k, l)}
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for i = αnB
(p), j = αnB

(q), k = βnB
(p), and l = βnB

(q).

Proof. hopsC(p, q) =

= min
h∈N+

{etpCheq > 0}
= min

h∈N+
{(eti ⊗ etk)(A

h ⊗Bh)(ej ⊗ el) > 0}
= min

h∈N+
{(etiAhej) · (etkBhel) > 0}

= max{hopsA(i, j) , hopsB(k, l) }.

Def. 10. For a graph A, the diameter of A is defined by

diam(GA) := max
(i,j)∈EA

hopsA(i, j)

Cor. 3. Let A◦IA = IA, B ◦IB = IB , and C = A⊗B. Then

diam(GC) = max{diam(GA), diam(GB)}.
Proof. diam(GC) =

= max
(p,q)∈EC

hopsC(p, q)

= max
(i,j)∈EA

max
(k,l)∈EB

max{hopsA(i, j) , hopsB(k, l) }
= max{ diam(GA) , diam(GB) }.

A. Vertex Eccentricity

Def. 11. For a vertex i ∈ VA, the eccentricity of i is defined
as

εA(i) := max
j∈VA

hopsA(i, j)

Cor. 4. Let A ◦ IA = IA, B ◦ IB = IB , and C = A⊗B. For
any vertex p ∈ VC ,

εC(p) = max{εA(i), εB(k)}
for i = αnB

(p) and k = βnB
(p).

Proof. εC(p) =

= max
q∈VC

hopsC(p, q)

= max
j∈VA,l∈VB

max{hopsA(i, j) , hopsB(k, l) }
= max{εA(i), εB(k)}

We demonstrate this result by letting A represent a real-

world scale-free graph and forming C = A⊗A, and computing

the vertex eccentricity of C using algorithms from [3]. We

compare with those that come from applying Cor. 4 to the

vertex eccentricities of A. Specifically, we chose A to be a

gnutella graph (gnutella08) from the SNAP dataset

[25]. The graph represents peer-to-peer file sharing activity.

We formed the undirected version of the largest connected

component, adding all self loops to A. Then we used our

distributed HPC graph generator to form C = A ⊗ A. We

show full histograms of the vertex eccentricity in Fig. 1, and

summarize the important graph properties below.

Data Graph Vertices Edges

gnutella08 A 6.3K 21K

A⊗A 40M 1.1B

B. Closeness Centrality

Def. 12. For a vertex i ∈ VA, the closeness centrality of i is
defined by

ζA(i) :=
∑
j∈VA

1

hopsA(i, j)
.

Thm. 4. Let A ◦ IA = IA, B ◦ IB = IB , and C = A ⊗ B.
For any vertex p ∈ VC ,

ζC(p) =
∑
j∈VA

∑
l∈VB

1

max{hopsA(i, j) , hopsB(k, l) } .

Proof. ζC(p) =

=
∑
q∈VC

1

hopsC(p, q)

=
∑
j∈VA

∑
l∈VB

1

max{hopsA(i, j) , hopsB(k, l) }

To compute the closeness centrality at vertex p ∈ VC , we

only need rows hopsA(i, ·) and hopsB(k, ·) of the hop count

matrix. This shows with O(nA + nB) storage and O(nAnB)
computation, we can compute ζC(p) as we build C. If we

store r << min{nA, nB} columns of the hop count matrices

for both A and B, this means we can compute r2 values of

ζC with similar order of memory, O(rnA + rnB) and cost

O(r2nAnB).
However, we can take advantage of the low number of

possibilities in hopsA(i, ·) and hopsB(k, ·) for small di-

ameter GA and GB and reduce the O(nAnB) complexity

of computing r2 values of ζC . We sort the values in the

columns hopsA(i, ·) and hopsB(k, ·) in decreasing order, and

rewrite the summation to factor out equivalent values. Let

h∗ = max{diam(GA), diam(GB)}.

ζC(p) =

h∗∑
h=1

|{(p, q) ∈ EC : hopsC(p, q) = h}|
h

.

Assuming nA > nB (w.l.o.g.) we see that the cost is

reduced to

O
(
rnA log nA + r2h∗

)
.

C. Controlling Diameter

The results in this section have assumed both A and B have

self loops on all vertices. By similar arguments, we can loosen

these requirements to get the following:

Thm. 5. Let A◦IA = IA, GB be undirected, and C = A⊗B.
Then for (p, q) ∈ EC , the hop count from p to q in GC satisfies

max{hopsA(i, j), hopsB(k, l)} ≤ hopsC(p, q)

≤ max{hopsA(i, j), hopsB(k, l)}+ 1
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(a) A (b) C = A⊗A

Fig. 1: Experiment gnutella that demonstrates vertex eccentricities comply with a max-type scaling law, as implied by

Cor. 4. We report an approximate vertex eccentricity distribution for C, as computed with algorithms from [3] (30% of vertices

may be estimating a value 1 greater than actual eccentricity).

for i = αnB
(p), j = αnB

(q), k = βnB
(p), and l = βnB

(q).

and

Cor. 5. Let A ◦ IA = IA, GB be undirected, and C = A⊗B.
Then

max{diam(GA), diam(GB)} ≤ diam(GC)
≤ max{diam(GA), diam(GB}+ 1.

Corollary 5 provides the ability to control the diameter of

Kronecker graphs. By taking B to be any (possibly real-world)

undirected graph and A to be a generated graph with self loops

and a known large diameter, Kronecker graphs that incorporate

the structure of B can be constructed to have large, controlled

diameters. Similarly, we can choose A to have vertices with

large eccentricities to produce a number of vertices in C with

large eccentricities, giving more fine-grained control of the

resulting graph.

VI. COMMUNITY STRUCTURE

Traditionally, a graph with community structure has vertex

sets with relatively high internal edge density and relatively

low external edge density. In this section, we demonstrate that

if factors A and B have strong community structure, then this

feature is maintained by the Kronecker graph that has all self

loops in both factors.

Def. 13. Let SA ⊂ VA and define indicator vector 1SA
∈ B

nA

to have a 1 in the i-th entry if and only if i ∈ SA. The internal

edge count is

min(SA) := 1

2
1t
SA

A1SA
,

whereas the external edge count is

mout(SA) = 1t
SA

A (1A − 1SA
) .

Internal and external edge densities are

ρin(SA) := 2min(SA)
|SA|(|SA| − 1)

, ρout :=
mout(SA)

|SA|(nA − |SA|) .

Def. 14. The Kronecker product of vertex sets SA ∈ VA and
SB ∈ VB is

SC = SA ⊗ SB := supp(1A ⊗ 1B)

Thm. 6. (Internal/External Edge Counts) Let A◦IA = OA,
B ◦ IB = OB . Let both factors have self loops for all vertices
added in C = (A+IA)⊗ (B+IB). Let SC = SA⊗SB Then,
min(SC) =

2min(SA)min(SB) +min(SA)|SB |+ |SA|min(SB),
and mout(SC) =

mout(SA)
[
1

2
mout(SB) + |SB |+ 2min(SB)

]

+ mout(SB)
[
1

2
mout(SA) + |SA|+ 2min(SA)

]
.

The proof of the previous result is in the appendix. We

use Thm. 6 to show that GC has sets whose internal density

follows a controlled scaling law (bounded from below).

Cor. 6. If |SA|, |SB | > 1, then

ρin(SC) ≥ 1

3
ρin(SA)ρin(SB)

Proof.

ρin(SC) = 2min(SC)
|SC |(|SC |−1) =

2(2min(SA)min(SB)+min(SA)|SB |+|SA|min(SB))
|SA||SB |(|SA||SB |−1) ≥
2(2min(SA)min(SB))
|SA||SB |(|SA||SB |−1) =

θ|SA|,|SB |ρin(SA)ρin(SB),
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where

θ|SA|,|SB | :=
(|SA| − 1)(|SB | − 1)

|SA||SB | − 1
.

which is greater than 1/3, as in Thm 1.

Additionally, given the assumption that there are signifi-

cantly many external edges (often true for communities where

|SA| << nA), a simple bound can be derived to show external

densities also follow a controlled scaling law (bounded from

above).

Cor. 7. Let mout(SA) ≥ |SA|, mout(SB) ≥ |SB |, and

ω := max

(
min(SA)
mout(SA) ,

min(SB)
mout(SB)

)
.

Then we have the following scaling law

ρout(SC) ≤ (1 + 3ω)Ω|SA|,|SB |ρout(SA)ρout(SB),
where

Ω|SA|,|SB | :=
1 + |SA||SB |n−1

A n−1
B

1− |SA||SB |n−1
A n−1

B

is a number slightly greater than 1 when |SA| << nA and
|SB | << nB .

Proof. By assumption

mout(SC) ≤ (1 + 3ω)mout(SA)mout(SB),
which yields

ρout(SC) =
mout(SC)

|SC |(nC − |SC |)
≤ (1 + 3ω)mout(SA)mout(SB)

|SA||SB |(nAnB − |SA||SB |)
≤ (1 + 3ω)Ω|SA|,|SB |ρout(SA)ρout(SB).

Def. 15. (Non-overlapping vertex partition) Let ΠA be a
non-overlapping vertex partition of VA, defined by amax vertex
sets

ΠA :=
{
S(a)
A

}amax

a=1
,

that satisfy S(a)
A ∩ S(a′)

A = ∅, for a �= a′ and
amax⋃
a=1

S(a)
A = VA.

Def. 16. (Kronecker Partition) Given partitions ΠA of VA
and ΠB of VB , the Kronecker partition ΠC = ΠA⊗ΠB is the
cmax := amaxbmax non-overlapping vertex sets defined by

ΠC :=
{
S(a)
A ⊗ S(b)

B

}

for a = 1, ..., amax and b = 1, ..., bmax.

Ex. 1. A simple example is seen by letting GA be xA disjoint
cliques of size yA and GB be xB disjoint cliques of size yB .

Then, C = (A+IA)⊗(B+IB) will be xAxB disjoint cliques
of size yAyB .

Slightly more generally, let factors A and B be stochastic
block models with xA and xB blocks, and with internal edge
densities ρ0 and external edge densities ρ1. If the graph factors
are of significant size, then, C = (A + IA) ⊗ (B + IB) will
have ρin(SC) ≈ ρ20 and ρout(SC) ≈ ρ21.

A. Community Density Experiment

We demonstrate the scaling laws in Cor. 6 and Cor. 7 for a

small GA with strong community structure. We let A be the

graph groundtruth_20000 from GraphChallenge dataset

[14], and set C = (A+ IA)⊗ (A+ IA). The 33 ground truth

communities were also mapped onto 1089 communities in VC
using Kronecker products, as in Def 16. We plot the internal

edge density versus external edge density in Figure 2, where

the scaling laws are validated.

A C = (A+ IA)⊗ (A+ IA)
VA 20,000 400,000,000

EA 408,778 83,549,726,642

# comms 33 1089

ρin [3e-2, 1e-1] [1e-3, 1.2e-2]

ρout [2.5e-4, 5.5e-4] [5e-7, 3e-6]

VII. CONCLUSION

This work presented an open-source distributed Kronecker

generator that produces the product C = A⊗B given files con-

taining A and B. It also provided many uses of nonstochastic

Kronecker products to efficiently calculate or control several

graph analytics on a large Kronecker graph using the analytics

on the smaller factors. The analytics considered here include

triangle counts at vertices and edges, clustering coefficients,

various distance metrics, and internal/external community edge

counts and densities. These results provide an additional tool

for validation of results at large scales. They also present the

possibility of use in benchmarks, and while the Kronecker

structure can still be intentionally exploited by algorithms,

there are ways to avoid accidental use of this structure for

triangle counting. Further work may provide more uses for

nonstochastic Kronecker graphs in validation and benchmark-

ing of algorithms.

APPENDIX

A. Proofs of Selected Results

Proof of Corr. 1.

Proof. (A+ IA)
3 ⊗ (B + IB)

3 =

A3 ⊗B3 +3A3 ⊗B2 +3A3 ⊗B +A3 ⊗ IB
+3A2 ⊗B3 +9A2 ⊗B2 +9A2 ⊗B +3A2 ⊗ IB
+3A⊗B3 +9A⊗B2 +9A⊗B +3A⊗ IB
+IA ⊗B3 +3IA ⊗B2 +3IA ⊗B +IA ⊗ IB .
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Fig. 2: Experiment groundtruth_20000 that demonstrates relatively high internal edge density and relatively low external

edge density are guaranteed when factor matrices have communities, as implied by Cor. 6 and Cor. 7.

−3(A+ IA)
2 ⊗ (B + IB)

2 =

−3A2 ⊗B2 −6A2 ⊗B −3A2 ⊗ IB
−6A⊗B2 −12A⊗B −6A⊗ IB
−3IA ⊗B2 −6IA ⊗B −3IA ⊗ IB .

+3(A+ IA)⊗ (B + IB) =

3A⊗B +3A⊗ IB
+3IA ⊗B +3IA ⊗ IB .

(C − IC)
3 = C3 − 3C2 + 3C − IC =

A3 ⊗B3 +3A3 ⊗B2 +3A3 ⊗B +A3 ⊗ IB
+3A2 ⊗B3 +6A2 ⊗B2 +3A2 ⊗B
+3A⊗B3 +3A⊗B2

+IA ⊗B3.

etiAei = etkBek = 0, thus

tp = 1
2e

t
p(C − I)3ep

= 2titk + 3(tidk + didk + ditk) + ti + tk.

Proof of Corr. 2.

Proof. The edge participation is (C − I)2 ◦ (C − I) = (C2 −
2C+I)◦ (C−I). We break it up and combine the terms after

simplifying, C2 ◦ (C − I) =⎧⎨
⎩

A2 ⊗B2 +2A2 ⊗B +A2 ⊗ IB
+2A⊗B2 +4A⊗B +2A⊗ IB
IA ⊗B2 +2IA ⊗B +IA ⊗ IB

⎫⎬
⎭◦

⎧⎨
⎩

A⊗B
+A⊗ IB
+IA ⊗B

⎫⎬
⎭

Noting IA ◦ A = OA, A ◦ A = A, IA ◦ IA = IA (and

similarly for B), we see C2 ◦ (C − I) =[
(A2 ◦A) + 2(A) + (A2 ◦ IA) + (IA)

] ⊗ (B2 ◦B)
+

[
2(A2 ◦A) + 4(A) + 2(A2 ◦ IA) + 2(IA)

] ⊗ (B)
+

[
(A2 ◦A) + 2(A)

] ⊗ (B2 ◦ IB)
+

[
(A2 ◦A) + 2(A)

] ⊗ (IB).

Then, C ◦ C = C, C ◦ IC = IC , so (−2C + I) ◦ (C − I) =

= −2C + 2IC
= −2A⊗B − 2A⊗ IB − 2IA ⊗B − IA ⊗ IB .

Plugging in ep = (ei ⊗ ej) and eq = (ek ⊗ el), yields

etp[(C
2 − 2C + I) ◦ (C − I)]eq =

ΔijΔkl + 2(Δij +Δkl)
+Δij(dk + 1)δ(k, l) + Δkl(di + 1)δ(i, j)

+2(diδ(i, j) + dkδ(k, l) + 1) + δ(i, j)δ(k, l).

because eti(A
2 ◦ IA)ej = δ(i, j), eti(A

2 ◦ IA)ej = diδ(i, j),
with similar equalities for B. Note that p �= q means that both

i = j and k = l cannot hold, and we see the result.

Proof of Thm. 6.

Proof. min(SC) = 1
21

t
SC

[C − IC ]1SC
=

1
21

t
SC

[(A⊗B) + (A⊗ IB) + (IA ⊗B)]1SC

= 1
2

(
1t
SA

A1SA

) (
1t
SB

B1SB

)
+

1
2

(
1t
SA

A1SA

) (
1t
SB

1SB

)
+

1
2

(
1t
SA

1SA

) (
1t
SB

B1SB

)
= 2min(SA)min(SB) +min(SA)|SB |+ |SA|min(SB).

For min(SC), first note that 1t
SA

A1A = 2min(SA) +
mout(SA) (and likewise for SB). Then 1t

SC
[C − IC ]1C =

1t
SC

[(A⊗B) + (A⊗ IB) + (IA ⊗B)]1C

=
(
1t
SA

A1A

) (
1t
SB

B1B

)
+

(
1t
SA

A1A

) (
1t
SB

1B

)
+

(
1t
SA

1A

) (
1t
SB

B1B

)
= (2min(SA) +mout(SA)) (2min(SB) +mout(SB))

+|SA| (2min(SB) +mout(SB))
+|SB | (2min(SA) +mout(SA))
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Lastly, mout(SC) = 1t
SC

[C − IC ]
(
1C − 1t

SC

)
=

1t
SC

[C − IC ]1C − 2min(SC) =
mout(SA)mout(SB) +mout(SA) (|SB |+ 2mout(SB)) +

mout(SB) (|SA|+ 2mout(SA)) .

Proof. min(SC) = 1
21

t
SC

[C − IC ]1SC
=

1
21

t
SC

[(A⊗B) + (A⊗ IB) + (IA ⊗B)]1SC

= 1
2

(
1t
SA

A1SA

) (
1t
SB

B1SB

)
+

1
2

(
1t
SA

A1SA

) (
1t
SB

1SB

)
+

1
2

(
1t
SA

1SA

) (
1t
SB

B1SB

)
= 2min(SA)min(SB) +min(SA)|SB |+ |SA|min(SB).

For min(SC), first note that 1t
SA

A1A = 2min(SA) +
mout(SA) (and likewise for SB). Then 1t

SC
[C − IC ]1C =

1t
SC

[(A⊗B) + (A⊗ IB) + (IA ⊗B)]1C

=
(
1t
SA

A1A

) (
1t
SB

B1B

)
+

(
1t
SA

A1A

) (
1t
SB

1B

)
+

(
1t
SA

1A

) (
1t
SB

B1B

)
= (2min(SA) +mout(SA)) (2min(SB) +mout(SB))

+|SA| (2min(SB) +mout(SB))
+|SB | (2min(SA) +mout(SA))

Lastly, mout(SC) = 1t
SC

[C − IC ]
(
1C − 1t

SC

)
=

1t
SC

[C − IC ]1C − 2min(SC) =
mout(SA)mout(SB) +mout(SA) (|SB |+ 2mout(SB)) +

mout(SB) (|SA|+ 2mout(SA)) .
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