
Graph Coloring on the GPU

Muhammad Osama∗, Minh Truong∗, Carl Yang∗†, Aydın Buluç† and John D. Owens∗
∗Dept. of Electrical & Computer Engr., University of California, Davis

†Computational Research Division, Lawrence Berkeley National Laboratory
Emails: {mosama, mstruong, ctcyang, jowens}@ucdavis.edu, {ctcyang, abuluc}@lbl.gov

Abstract—We design and implement parallel graph coloring al-
gorithms on the GPU using two different abstractions—one data-
centric (Gunrock), the other linear-algebra-based (GraphBLAS).
We analyze the impact of variations of a baseline independent-set
algorithm on quality and runtime. We study how optimizations
such as hashing, avoiding atomics, and a max-min heuristic
affect performance. Our Gunrock graph coloring implementation
has a peak 2× speed-up, a geomean speed-up of 1.3× and
produces 1.6× more colors over previous hardwired state-of-the-
art implementations on real-world datasets. Our GraphBLAS
implementation of Luby’s algorithm produces 1.9× fewer colors
than the previous state-of-the-art parallel implementation at the
cost of 3× extra runtime, and 1.014× fewer colors than a greedy,
sequential algorithm with a geomean speed-up of 2.6×.

Index Terms—parallel, GPU, graph coloring, graph algorithms

I. INTRODUCTION

A graph G = (V,E) is comprised of a set of vertices V
together with a set of edges E, where E ⊆ V × V . Graph

coloring C : V → N is a function that assigns a color

to each vertex that satisfies C(v) �= C(u) ∀(v, u) ∈ E.

In other words, graph coloring assigns colors to vertices

such that no vertex has the same color as a neighboring

vertex. Graph coloring is particularly useful in parallelizing

computations for graphs (or graph-like data structures) such

as the deterministic scheduling of dynamic computations [1].

Graph coloring is critical for the register allocation problem in

compiler optimization [2], preconditioners for sparse iterative

linear systems [3], [4], exam timetable scheduling [5], Sudoku

solving [6], regularizing sparse matrix-matrix products [7], and

approximating sparse Jacobians and Hessians that arise during

automatic differentiation [8], [9].

Given a coloring C, many computations over same-colored

vertices can be completely data-parallel, and computations

iterate over all colors to process all vertices. Consequently

it is desirable to minimize the number of colors in a graph

coloring. However, a graph coloring that minimizes the num-

ber of distinct colors is NP-hard, difficult to approximate,

and challenging to parallelize. In practice, various heuristics

are used, and different algorithms and implementations of

graph coloring exhibit tradeoffs between computation time and

number of colors in the computed graph coloring.

Our contributions in this paper are as follows:

1) We survey parallel graph coloring algorithms on the

GPU, and investigate how different optimizations such

as hashing, avoiding atomics, and a max-min heuristic

impact runtime and number of colors.

2) We show how the independent-set-based algorithm using

Luby’s Monte Carlo heuristic maps to a data-centric and

a linear-algebra-based graph framework on the GPU,

which are Gunrock [10] and GraphBLAS [11] respec-

tively.

3) We demonstrate a peak 2× speed-up and a geometric

mean speed-up of 1.3× over the previous hardwired

state-of-the-art implementation [12], using Gunrock’s

high-level, bulk-synchronous, data-centric implementa-

tion of a parallel graph coloring algorithm.

4) We are the first to design a parallel graph coloring

algorithm that uses linear-algebra-based primitives based

on the GraphBLAS API. The implementation yields

a coloring with 1.9× and 5.0× fewer colors than the

two state-of-the-art graph coloring implementations by

Naumov et al. [12], and 1.014× fewer colors than the

greedy sequential algorithm in 1.92× less time.

II. BACKGROUND & RELATED WORK

Given a graph G = (V,E), let n = |V | and m = |E|.
A graph is undirected if for all v, u ∈ V : (v, u) ∈ E ⇐⇒
(u, v) ∈ E. Otherwise, it is directed. The set of neighboring

vertices to vertex v is called its adjacency adj(v).
The classic sequential “greedy” graph coloring algorithm

works by using some ordering of vertices. Then it colors

each vertex in order by using the minimum color that does

not appear in its neighbors. While there exists an ordering

that leads to the optimal number of colors, the problem of

finding such a perfect ordering is NP-hard. Fortunately, certain

orderings (such as ordering the vertices by degree from largest

to smallest) can be used to bound the maximum number of

colors to no more than one more than the maximum degree

of the graph.

Algorithm 1 The parallel graph coloring algorithm.

Input: Graph G = (V,E)
Output: Array C of colors for each v ∈ V .

1: procedure PARALLELCOLOR(A)
2: U ← V
3: while |U | ≥ 0 do
4: Choose an independent set I from U in parallel
5: Color the vertices in I and put in C
6: U ← U − I
7: end while
8: return C
9: end procedure

231

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00046

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

This greedy algorithm cannot be easily parallelized. Instead,

one approach to parallel graph coloring uses independent sets.

Shown in Algorithm 1, an independent set is found in parallel

every iteration, which is then colored. Research has then

been focused around how such an independent set is found.

Luby’s parallel maximal independent set algorithm is one such

heuristic [13]. The Monte Carlo heuristic Luby proposes is the

following:

1) For each v ∈ V , generate a random number p(v)
2) v is added to the independent set I if and only if p(v) >

p(w) for all w ∈ adj(v).
Two heuristics that follow are: (1) Luby’s algorithm in

which the independent set I is maximal, and (2) a generalized

Luby’s algorithm in which I does not have to be maximal.

Jones and Plassmann propose a parallel graph coloring

algorithm for asynchronous distributed execution [14]. In

their computation model, they assign a single vertex to each

processor and communicate colors between neighboring ver-

tices. Each vertex then colors itself using the minimum color

available to it.

A. Multi-threaded CPU

For a shared memory computation model, Gebremedhin and

Manne [15] propose a greedy algorithm. Their algorithm has

3 phases: optimistic (speculative) coloring, conflict detection,

and conflict resolution. The first phase involves assigning a

batch of vertices to different processors, assigning the mini-

mum color available to a vertex (taking into account both local

and remote neighbors), synchronizing with other processors,

and repeating. In doing so, however, different processors may

color two neighboring vertices in the same step. That motivates

the conflict detection phase, which is done in parallel, and the

conflict resolution phase, which is done sequentially. Deveci et

al. [16] modify the Gebremedhin-Manne algorithm for Xeon

Phi and GPU. Using the work-span model, Hasenplaugh et

al. [17] study the various impact of different orderings on the

parallel complexity, runtime and quality of ordering.

B. Distributed CPU

To the best of our knowledge, the first distributed-memory

implementations of graph coloring algorithms are due to

Allwright et al. [18]. They implemented Luby’s algorithm, the

Jones-Plassmann heuristic, as well as two greedy heuristics:

smallest-degree-last and largest-degree-first, on both the CM-5

and the Intel iPSC/860 computers. They found that smallest-

degree-last greedy heuristic used the fewest number of colors.

In terms of performance, Jones-Plassmann and largest-degree-

first were the two fastest codes.

Bozdağ et al. [19] extend the work of Gebremedhin and

Manne to a graph coloring framework in distributed mem-

ory. Their scheme also involves speculative coloring, conflict

detection, and finally conflict resolution. The advantage of

greedy algorithms compared to independent-set-based algo-

rithms such as Jones-Plassmann is that they often result

in fewer colors. More recently, Salihoğlu and Widom [20]

implement a similar scheme on Pregel-like systems where

they apply various additional optimizations such as finishing

computations serially.

C. Handcoded GPU

The first graph coloring work on the GPU was done

by Grosset et al. [21]. Their algorithm is based on the

Gebremedhin-Manne algorithm, and they find that they can

color with fewer colors than distributed graph coloring imple-

mentations. Naumov et al. [12] implement a state-of-the-art

implementation csrcolor using the popular cuSPARSE library.

Their algorithm implements the generalized Luby’s algorithm.

Che et al. [22] study variations of the Jones-Plassmann algo-

rithm. They observe a static work allocation runs into load-

imbalance problems, so they use a largest degree-first strategy

for early iterations, followed by a randomized strategy.

III. GRAPH PROCESSING FRAMEWORKS

We consider two graph processing frameworks for the GPU:

GraphBLAS [11] and Gunrock [10].

A. GraphBLAS

Several independent systems use matrix algebra to perform

graph operations [23]–[25]. GraphBLAS is an effort by the

graph analytics community to unify such efforts into a single,

unified API [26], [27]. The goal of the GraphBLAS API

specification is to outline the common, high-level operations—

such as vector-vector inner product, matrix-vector product, and

matrix-matrix product—and define the standard interface for

scientists to use these functions in a hardware-agnostic manner.

This way, the runtime of the GraphBLAS implementation

can make the difficult decisions about optimizing each of

the GraphBLAS operations on a given piece of hardware. In

this paper, instead of defining our own functions, we use the

functions from the GraphBLAS API when we describe our

algorithms.

We give an informal introduction to the five GraphBLAS

operations that we use in the GraphBLAS-based graph col-

oring algorithm (Algorithm 2), but an interested reader can

consult the API document for more details [26].

1) Assign to a vector (GrB assign): Assigns a scalar to a

vector using a mask, which is a core concept of GraphBLAS.

The mask controls whether a result of the computation will be

written to the output array. As an example, let us consider the

elementwise multiplication operation for vectors a, b, c using

a mask vector m i.e. c ← a × b .∗ m. If the mask element

m[i] is C-style castable to 0, then computation result c[i] is

unchanged. However, if the mask element is C-style castable

to 1, then the computation result c[i] = a[i]× b[i]. If we take

= to mean “C-style castable”, then:

c[i]←
{

c[i], if m[i] = 0
a[i]× b[i], if m[i] = 1

At a high-level, masking has proved to be important for

performance, because we can avoid many memory accesses

when the mask is 0 [28].

232

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Parallel independent set graph coloring algorithm

implemented in linear algebra (GraphBLAS).

Input: Adjacency matrix A of graph G = (V,E), already built
empty vectors C, weight, frontier

Output: Array C of colors for each v ∈ V .
1: procedure GRAPHBLASCOLOR(A, C)
2: � Initialize colors to 0
3: GrB assign(C, GrB NULL, 0, GrB ALL, nrows(A), desc);
4: � Assign random weight to each vertex
5: GrB apply(weight, GrB NULL, GrB NULL,

set random(), weight, desc);
6: for each color = 1, . . . , n do
7: � Find max of neighbors
8: GrB vxm(max, GrB NULL, GrB NULL,

GrB INT32MaxTimes, weight, A, desc);
9: GrB eWiseAdd(frontier, GrB NULL, GrB NULL,

GrB INT32GT, weight, max, desc);
10: � Find all largest nodes that are uncolored
11: GrB reduce(succ, GrB NULL, GrB INT32Plus,

frontier, desc);
12: � Stop when frontier is empty
13: if succ = 0 then
14: break;
15: end if
16: � Assign new color
17: GrB assign(C, frontier, GrB NULL, color, GrB ALL,

nrows(A), desc);
18: � Get rid of colored nodes in candidate list
19: GrB assign(weight, frontier, GrB NULL, 0,

GrB ALL, nrows(A), desc);
20: end for
21: end procedure

2) Apply user-defined function (GrB apply): Applies the

user-defined function to each element of a vector. In this case,

we are using ‘set random()’ to set each vector element to a

random integer.

3) Vector-matrix multiply (GrB vxm): Multiplies a vector

by a matrix. The GraphBLAS API hides the distinction be-

tween sparse vs. dense vectors and matrices from the user, but

instead allows the implementation to internally call different

subroutines based on input sparsity. One core concept of

GraphBLAS is that it relies on overloading the standard arith-

metic semiring through the concept of generalized semirings.

For example, the matrix-vector multiplication is done using

the max-times semiring ‘GrB INT32MaxTimes’ (max,×,R),
which overloads the standard arithmetic semiring (×,+,R).
Our implementation uses a proposed addition [29] to the

standard GraphBLAS API called predefined semirings, which

avoids the user having to use the ‘GrB Semiring‘ interface to

build the matrix-multiplication operation they want.

4) Elementwise add (GrB eWiseAdd): Elementwise adds

a vector with another vector.

5) Vector reduction (GrB reduce): Reduces a vector to a

scalar.

B. Gunrock

Gunrock is a parallel graph analytics library that employs

a high-level data-centric abstraction focused on operations on

vertex or edge frontiers [10]. Hidden from the programmer,

Gunrock integrates sophisticated load-balancing and work-

efficiency strategies into its core. These strategies are exposed

to the programmer using a high-level API as Gunrock’s

operators. In this paper we will leverage the following Gun-

rock’s high-performance operators to express our algorithms,

and measure and compare the performance of the different

implementations:

1) Advance Operator: An advance operator is used to

generate a new frontier from the current frontier by visiting

the neighbors of the current frontier. Each input item maps to

multiple output items from the input item’s neighbor list.

2) Compute Operator: A compute operator defines an oper-

ation on all elements (vertices or edges) in its input frontier. A

programmer-specified compute operator can be used together

with a traversal operator such as advance. Gunrock performs

that operation in parallel across all elements without regard to

order.

3) Neighbor-Reduce Operator: A neighbor-reduce operator

uses the advance operator to visit the neighbor list of each item

in the input frontier and performs a segmented reduction over

the neighborhood (neighbor list) generated via the advance.

IV. IMPLEMENTATION MAPPING TO FRAMEWORKS

We implemented our parallel graph coloring algorithms

using two GPU graph processing frameworks: GraphBLAS

and Gunrock. It is challenging to write hardwired graph

algorithms on the GPU, so our goal is to find out whether these

two frameworks are flexible enough to design and implement

a graph coloring algorithm, and whether the result will be

performance-competitive with the state of the art.

In both frameworks, we input compressed sparse row (CSR)

sparse matrix format, which is commonly used for graph

analytics. In CSR, one array stores a list of neighbor nodes

and another array stores the offset of the neighbor list for

each node. The column-indices array and row-offsets array

are equivalent to the neighbor nodes list and the offset list in

the basic adjacency list definition.

A. GraphBLAS

1) Independent Set Graph Coloring: Algorithm 2 shows the

Independent Set (IS) graph coloring algorithm designed using

the GraphBLAS API. This will be the base algorithm, which

we will modify to do maximal independent set and Jones-

Plassman graph coloring. We begin at Line 3 by initializing

the color vector C to 0, which means each vertex is uncolored.

This is done using the GrB assign function. Next, each vertex

of the weight vector must be initialized to a random integer

using a user-defined function ‘set random()’.

For each vertex v of the weight vector, we find the max

weighted neighbor in adj(v). This operation is performed

using GrB vxm in Line 8 of Algorithm 2 where we multiply

the weight vector with adjacency matrix A on the (max,×,R)
semiring. Next, to find the independent set, we compare the

max weighted neighbor of each vertex with its own weight

using the GrB eWiseAdd function with the GrB INT32GT

binary function. This function compares two integer values

233

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

and returns true if the lefthand side element is greater than

the righthand side element, and false otherwise. The output in

the frontier vector will be the independent set this iteration.

Next, we compute a reduction using GrB reduce to determine

the size of the independent set. If it is zero, then we are

done. Otherwise, we must color it and eliminate it from the

candidate list weight. These two operations can be done with

GrB assign.

Algorithm 3 Maximal independent set graph coloring inner

loop implemented in linear algebra (GraphBLAS).

Input: Adjacency matrix A of graph G = (V,E), already built
empty vectors mis, weight, frontier

Output: Maximal independent set vector mis.
1: procedure GRAPHBLASMISINNER(A, mis)
2: � Initialize MIS array to 0
3: GrB assign(mis, GrB NULL, 0, GrB ALL, nrows(A),

desc);
4: do
5: � Find max of neighbors
6: GrB vxm(max, weight, GrB NULL,

GrB INT32MaxTimes, weight, A, desc);
7: � Find all largest nodes are candidates
8: GrB eWiseAdd(frontier, GrB NULL, GrB NULL,

GrB INT32GT, weight, max, desc);
9: � Assign new members (frontier) to independent set

10: GrB assign(v, f, GrB NULL, 1, GrB ALL, nrows(A),
desc);

11: � Eliminate frontier from candidate list
12: GrB assign(weight, frontier, GrB NULL, 0, GrB ALL,

nrows(A), desc);
13: � Stop when frontier is empty
14: GrB reduce(succ, GrB NULL, GrB INT32Plus,

frontier, desc);
15: if succ = 0 then
16: break;
17: end if
18: � Remove neighbors of frontier from candidates
19: GrB vxm(max, weight, GrB NULL, GrB Boolean,

frontier, A, desc);
20: GrB assign(weight, max, GrB NULL, 0, GrB ALL,

nrows(A), desc);
21: while succ > 0
22: end procedure

2) Maximal Independent Set Graph Coloring: To imple-

ment maximal independent set graph coloring, we replaced

Lines 8 and 9 of Algorithm 2 with a call to GRAPHBLAS-

MISINNER (Algorithm 3). The main difference is that instead

of using the Monte Carlo heuristic proposed by Luby once, we

keep adding vertices to the independent set until it is maximal.

Only when it is maximal do we color the independent set.

Therefore, the main difference is that we introduce a do-while

loop on Line 4. In order to add vertices to the independent set,

the problem of conflicts in the next iteration must be solved.

This is done by doing a second traversal per iteration in order

to find the independent set’s neighbors, which can then be

removed. These two operations are done by the GrB vxm
and GrB assign on Lines 19 and 20.

3) Jones-Plassman Graph Coloring: To implement Jones-

Plassman graph coloring, we replaced Lines 8 and 9 of Algo-

Algorithm 4 Parallel Jones-Plassman graph coloring algorithm

helper function implemented in linear algebra (GraphBLAS).

Input: Adjacency matrix A of graph G = (V,E), color vector
C, random vector weight, independent set frontier, already built
empty vector colors, vector ascending that has been filled with
numbers 0, 1, 2, ... max colors

Output: Minimum available color min color.
1: procedure GRAPHBLASJPINNER(A, C)
2: � Find neighbors of frontier
3: GrB vxm(max, C, GrB NULL, GrB Boolean, frontier,

A, desc);
4: � Get min color
5: GrB eWiseMult(n, GrB NULL, GrB NULL,

GrB INT32PlusMul, max, C, desc);
6: � Fill possible colors array
7: GrB assign(colors, GrB NULL, GrB NULL, 0,

GrB ALL, nrows(A), desc);
8: � Scatter nodes into possible colors array
9: GxB scatter(colors, GrB NULL, n, max colors, desc);

10: � Map boolean array to element id
11: GrB eWiseMult(min array, GrB NULL, GrB NULL,

GrB INT32MinPlus, colors, ascending, desc);
12: GrB Vector setElement(min array, max colors, 0);
13: � Compute min color
14: GrB reduce(min color, GrB NULL, GrB INT32Max,

min array, desc);
15: return min color;
16: end procedure

rithm 2 with a call to GRAPHBLASJPINNER (Algorithm 4).

The primary challenge that needs to be addressed in Jones-

Plassman is after determining the candidate independent set

frontier, finding the minimum color available to all these

vertices.

The latter task can be formulated as follows: We have a set

of colors represented by the natural numbers and wish to find

the smallest number not in the set. We implement this with a

scatter (Line 9) to an array of possible colors colors:

colors[n[i]] = max colors[i] for all i ∈ n

However, this scatter could not be done within the confines

of the GraphBLAS API. Therefore, we needed a GraphBLAS

extension operation GxB scatter. Next, the first zero in this

Boolean array must be found. This can be done by comparing

the Boolean array to an ascending integer array, and returning

1 if the two array’s values match and a 0 if they do not. Finally,

a min-reduction on the Boolean array yields the minimum

available color.

B. Gunrock

1) Independent Set Graph Coloring: The Independent Set

(IS) graph coloring algorithm finds an independent set of

vertices to be colored based on random-number comparisons.

Neighboring vertices compare their pre-assigned random num-

bers with one another. The independent color set contains only

those vertices that possess the largest random numbers relative

to their neighbors. Every vertex inside the independent color

set can then be painted with the same color because they are

guaranteed to not be neighbors.

234

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

Our Gunrock implementation of this algorithm follows. In

it, a compute operator inputs a frontier of all vertices and

compares each vertex’s random number to its neighbors’ in

parallel. A for loop within each thread execution flow checks

the vertex’s assigned random number with its neighbor’s

serially on Lines 25–35 of Algorithm 5. This results in load

imbalance because each vertex has a different degree. Thread

divergence is also a concern, because the random number

comparison divides the frontier into vertices that belong to the

independent color set and vertices that do not. The Gunrock

enactor iteratively calls this compute operator until all vertices

are colored on Line 9 of Algorithm 5. The algorithm checks

for valid vertices’ colors by invoking another compute operator

after every coloring. The thread execution, when checking for

valid colors, atomically counts the number of vertices in the

independent color set. If the count is equal to the number

of vertices in the graph, then all vertices in the graph have

been successfully colored and Gunrock can stop the executing

iteration loop.

An optimization for this implementation involves forming

two independent sets every iteration. Instead of only assigning

vertices with the largest random number relative to their

neighbors to a maximum independent color set, the implemen-

tation also assigns colors to vertices with the smallest random

number to a minimum independent color set. Because the

max-comparison and min-comparison sets must be mutually

exclusive, we can perform assignment on two colors every

iteration with no additional overhead, amortizing the cost of

the serial for loop (Lines 33 and 41 of Algorithm 5). This

optimization reduces the coloring time almost by half.

2) Hash and Independent Set Graph Coloring: We propose

a Hash Independent Set algorithm, which is a modification

of the Independent Set algorithm. Each vertex in the frontier

compares only its neighbors with one another, and adds the

neighbor vertex with the largest random number relative to all

neighbors to the color set. This method guarantees one color

proposal per vertex, because for every vertex there exists at

least one neighbor vertex with the largest random number.

This means the Hash IS color set can contain more vertices

than the independent color set of min-max IS (Lines 20–24 of

Algorithm 6). The color set is not an independent set, unlike

the IS color proposal, because each vertex knows only its local

topology. Asserting that one of the neighbors can be colored

without knowing the neighbor’s connections can result in a

color conflict, since neighboring vertices can be added to the

color set by different proposing vertices. In min-max IS, a

vertex either forfeits its access to the independent color set

(if a neighbor has a better random number), or adds itself to

the set only when all neighbor vertices forfeit their accesses.

Having a larger color set means Hash IS solutions have fewer

iterations and a potentially fewer number of colors. It also

means the coloring process is not an exact solution, and needs

a conflict resolution scheme.

The conflict resolution is another compute operation. It

checks all colored vertices with their neighbors in a serial

for loop similar to the min-max IS coloring scheme. If the

Algorithm 5 Parallel graph coloring algorithm implemented

in Gunrock with min-max coloring optimization.

Input: Frontier F = (V) for all V ∈ G.
Output: Array C of colors for each v ∈ V .

1: � Gunrock’s color primitive driver.
2: procedure GUNROCKCOLOR(F,C,R)
3: Initialize iteration← 0
4: � Initialize colors to be invalid
5: Initialize C ← c ∀c = invalidColor
6: � Assign random weight to each vertex
7: Initialize R← generateRandomNumbers
8: Initialize F ← v ∀v ∈ G
9: while ∀c ∈ C is not valid do

10: � Call coloring compute operator using a parallel forall
11: F ← ComputeOp(

ColorOp(iteration, C,R), F)
12: end while
13: end procedure
14: � Gunrock’s Compute Coloring operator
15: procedure COLOROP(iteration,C,R)
16: v = F [threadIdx]
17: � If already colored, return
18: if C[v] is valid then:
19: return
20: end if
21: Initialize colormax← true
22: Initialize colormin← true
23: color ← 2 ∗ iteration
24: � Visit all neighbors of an active node and find the minimum

and maximum random number
25: for u ∈ Neighbor(v) do
26: if C[u] is valid

& C[u] �= color + 1
& C[u] �= color + 2 then

27: continue
28: end if
29: if R[v] ≤ R[u] then
30: colormax← false
31: end if
32: if R[v] ≥ R[u] then
33: colormin← false
34: end if
35: end for
36: � If active vertex is the maximum or minimum, color it
37: if colormax then
38: C[v]← color + 1
39: end if
40: if colormin then
41: C[v]← color + 2
42: end if
43: end procedure

resolution detects a color conflict, it resets one of the violating

vertices to uncolored. In general, the implementation sacrifices

fast runtime for fewer colors. To amortize the cost of the

conflict resolution, the implementation uses a hash table to

inform the vertex about previous colors that cannot be used.

Based on this partial knowledge, the vertex can choose to

either use previous colors that are not prohibited by the hash

table or use a new color generated every iteration. Doing so

potentially reduces the total number of colors used. Because

the hash table does not store all prohibited colors for a vertex,

the vertex can end up using one of those colors. This means

235

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

the conflict resolution scheme can check for conflicts due to

non-independent color set and the use of prohibited colors at

the same time. Empirically, using the hash table can reduce

the total number of colors by 1 or 2. Our hash table reserves

a fixed number of entries per vertex. A hash generation

operator populates colors that vertices cannot use based on the

vertices’ neighbor. The hash table size is a modifiable value,

and is inversely related to the number of conflicts because

the table does not guarantee storing all prohibited colors. A

Gunrock compute operator automatically updates the table

every coloring iteration after new vertices are colored. If all

entries for a vertex are filled, the table ignores new colors

for that vertex. Better hash functions can replace the random

number comparison with a color proposal based on color sets

of previous iterations.

Algorithm 6 Parallel graph coloring algorithm implemented

in Gunrock with hash coloring optimization.

Input: Frontier F = (V) for all V ∈ G.
Output: Array C of colors for each v ∈ V .

1: � Gunrock’s Compute Hash Coloring operator
2: procedure HASHCOLOROP(iteration,C,R,H)
3: v = F [threadIdx]
4: � If already colored, return
5: if C[v] is valid then:
6: return
7: end if
8: Initialize max/min← v
9: Initialize temp← R[v]

10: color ← 2 ∗ iteration
11: for u ∈ Neighbor(v) do
12: if R[u] > temp & C[u] is not valid then
13: max← u
14: end if
15: if R[u] < temp & C[u] is not valid then
16: min← u
17: end if
18: end for
19: � Reuse existing color first if possible
20: for c ∈ UsedColors do
21: if c /∈ H(max/min, u)∀u ∈ Neighbor(max/min)

& C[max/min] is not valid then
22: C[max/min]← c
23: end if
24: end for
25: � If existing colors result in conflict, use new color
26: if C[max/min] is not valid then
27: C[max/min]← color + 1 / color + 2
28: end if
29: end procedure

3) Advance Neighbor-Reduce Graph Coloring: The Ad-

vance Neighbor-Reduce coloring implementation eliminates

the serial for loop found inside the min-max IS operator on

Lines 25–35 of Algorithm 5 with a parallel reduce on Lines

24–28 of Algorithm 7. This implementation uses Gunrock’s

Advance operator to gain access to all neighboring vertices

in parallel. The Reduce operator then compares all vertex-

assigned random numbers to all neighbor vertices in parallel,

flagging to-be-colored vertices. A compute operator then col-

ors all flagged vertices in parallel.

This implementation is similar to min-max IS because

Advance Reduce operators return an independent color set.

However, because the Reduce operator can only perform

binary operations (either max or min comparison), the imple-

mentation cannot paint two colors per iteration. This is because

the Reduce operator consumes the Advance neighbor frontier;

reusing the frontier for a second comparison is not permitted

without launching another neighbor-reduce operation (one

for max reduction, one for min reduction). Another future

optimization is to fuse the max and min operations and use a

single reduce operator to avoid a global synchronization.

Algorithm 7 Parallel graph coloring algorithm implemented

in Gunrock using Advance Reduce operator.

Input: Frontier F = (V) for all V ∈ G.
Output: Array C of colors for each v ∈ V .

1: � Gunrock’s Advance-Reduce color primitive driver.
2: procedure GUNROCKARCOLOR(F,C,R)
3: Initialize iteration← 0
4: Initialize C ← c ∀c = invalidColor
5: Initialize R← generateRandomNumbers
6: Initialize F ← v ∀v ∈ G
7: Initialize Removed← []
8: while ∀c ∈ C is not valid do
9: � Create a neighborhood frontier and reduce

10: F ← NeighborReduceOp(
AdvanceOp(F,Removed),
ReduceMaxOp(Removed))

11: F ← ComputeOp(
ColorRemovedOp(iteration, C,Removed))

12: end while
13: end procedure
14: � Advance operator: Visit all neighbors to reduce
15: procedure ADVANCEOP(F,Removed)
16: v = F [blockIdx]
17: if Neighbor(v, threadIdx) /∈ Removed then
18: return Neighbor(v, threadIdx)
19: end if
20: end procedure
21: � Reduce a neighbor segment based on the max random number
22: procedure REDUCEMAXOP(Removed)
23: a = F [2 ∗ threadIdx+ 1]
24: b = F [2 ∗ threadIdx+ 2]
25: Reduced.append((a < b) ? b : a)
26: end procedure
27: � Color vertices that are removed from frontier
28: procedure COLORREMOVEDOP(iteration,C,Removed)
29: v = Removed[threadIdx]
30: if C[v] is valid then:
31: return
32: end if
33: C[v] = iteration
34: end procedure

V. EXPERIMENTS & DISCUSSION

A. Experimental setup

We ran all experiments in this paper on a Linux work-

station with 2× 3.50 GHz Intel 4-core E5-2637 v2 Xeon

CPUs, 556 GB of main memory, and an NVIDIA K40c GPU

with 12 GB on-board memory. The GPU programs were

compiled with NVIDIA’s nvcc compiler (version 9.1.85). The

236

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

Dataset Vertices Edges Avg. Degree Diameter Type

offshore 260k 4.2M 17.33 41* ru
af shell3 505k 17.6M 35.84 485* ru

parabolic fem 1.1M 112.8M 8 1536* ru
apache2 7.4M 4.8M 7.74 449* ru
ecology2 1M 5M 6 1998* ru
thermal2 4.2M 483M 8 1778* ru

G3 circuit 1.6M 7.7M 5.83 515* ru
FEM 3D thermal2 148k 3.5M 24.6 150 rd
thermomech DK 204k 2.8M 14.93 647* rd

ASIC 320ks 322k 1.3M 6.68 45 rd
cage13 445k 7.5M 17.8 42* rd

atmosmodd 1.3M 8.8M 7.94 351* rd
rgg n 2 15 s0 32.8k 320k 9.78 191 gu
rgg n 2 16 s0 65.6k 684k 10.44 254 gu
rgg n 2 17 s0 131k 1.5M 11.11 341 gu
rgg n 2 18 s0 262k 3.1M 11.8 464 gu
rgg n 2 19 s0 524k 6.5M 12.47 632* gu
rgg n 2 20 s0 1M 13.8M 13.14 865* gu
rgg n 2 21 s0 2.1M 29M 13.81 1182* gu
rgg n 2 22 s0 4.2M 60.7M 14.47 1621* gu
rgg n 2 23 s0 8.4M 127M 15.14 2230* gu
rgg n 2 24 s0 16.8M 265.1M 15.8 2622 gu

TABLE I: Dataset Description Table. Graph types are: r: real-

world, g: generated, u: undirected, d: directed. An asterisk (*)

indicates diameter is an estimate using samples from 10,000

vertices.

C code was compiled using gcc 5.4.0. All graph coloring

tests were run 10 times with the average runtime used for

results. The implementation of GraphBLAS we use is called

GraphBLAST [11].

The datasets we used are listed in Table I. The rgg random-

ized graphs were generated for DIMACS10 [30], [31], and all

other graphs are from the SuiteSparse Matrix Collection [32].

All datasets have been converted to undirected graphs, and

self-loops and duplicated edges are removed.

B. Performance Summary of Gunrock

Figure 1a compares runtime for our Gunrock and Graph-

BLAST implementations and state-of-the-art Naumov et al.

JPL and CC GPU implementations with a baseline CPU

implementation. In general, our Gunrock’s Independent Set

implementation shows better performance over Naumov et al.’s

JPL implementation with a comparable color count because of

our min-max independent set optimization, essentially gener-

ating two independent sets for every iteration. Gunrock’s IS

implementation uses a compute operator (not load-balanced),

which as the results show outperforms Gunrock’s AR im-

plementation (load-balanced), because the overhead of doing

complex load-balancing when using advance and segmented

reduction on neighbors is more taxing than simply assigning

each active thread to a vertex and generating two independent

sets per iteration than one. Gunrock’s Hash implementation

doesn’t perform well against Naumov et al.’s JPL imple-

mentation due to the global synchronization required after

generating the sets before resolving any color conflicts. The

conflict resolution operator and the hash generation within the

Optimization Performance (ms) Speedup

Baseline (Advance-Reduce) 656 —
Hash Color 17.21 38.11×

Independent Set with Atomics 13.67 1.26×
Independent Set without Atomics 11.15 1.23×

Min-Max Independent Set 6.68 1.67×

TABLE II: Impact of Gunrock’s optimizations on the perfor-

mance measured in elapsed time (ms) on the G3 circuit dataset

with approximately 1.6M vertices and 7.7M edges.

hash implementation also contribute to the slowdown when

compared against Gunrock’s IS implementation.

Our Independent-Set-based graph coloring achieves a peak

performance of 2× on the parabolic fem dataset, and a

geometric mean of 1.3× compared to Naumov’s JPL imple-

mentation, while maintaining a comparable color count. The

performance gain observed against Naumov’s implementation

is mainly due to the two independent set coloring per itera-

tion optimization. Gunrock’s IS implementation also avoids

atomics and global synchronization unlike other Gunrock

implementations. The flaw of the IS implementation is the

serial for-loop within the compute operator that visits all

neighbors per active vertex. The performance degradation due

to the serial for-loop is clearly visible in the af shell3 dataset

(as shown in Figure 1a, a slowdown of 0.47× compared to

Naumov’s JPL implementation), where the average degree of

the graph is 35.84, much higher than some of the other test

datasets (see Table I).

Our Hash-based graph coloring expands on IS min-max

coloring by using two additional compute operators for conflict

resolution and hash generation. Due to the additional operators

we are able to reuse colors for every iteration and generate a

lower color count than the IS implementation (see Figure 1b).

Due to the additional operators, we now require two global

synchronizations, one after each operator, causing the slow-

down when compared to the IS implementation.

Our Advance Neighbor-Reduce based graph coloring per-

forms poorly against the state-of-the art and other Gunrock

implementations. The goal of this implementation was to

eliminate the serial for-loop within the Gunrock’s IS and

Hash implementation with a parallel segmented reduce. How-

ever, the overhead of performing a load-balanced advance-

segmented reduce with two global synchronizations is more

than simply assigning each vertex to an active thread with

a serial for-loop. The bottleneck of the AR implementation is

the segmented reduction operation within the neighbor-reduce,

internally performed by assigning segments to threads, warps

or blocks depending on the size of the segment.

C. Performance Summary of GraphBLAST

On the real-world data shown in Figure 1a, the three Graph-

BLAST implementations in terms of runtime can be listed

from slowest to fastest as independent set, Jones-Plassman,

and maximal independent set. The latter two are 1.98× and

3× slower than the independent set baseline. The fastest

237

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

A
S
IC
_3
20
ks

F
E
M
_3
D
_t
he
rm
al
2

G
3_
ci
rc
ui
t

af
_s
he
ll3

ap
ac
he
2

at
m
os
m
od
d

ca
ge
13

ec
ol
og
y2

of
fs
ho
re

pa
ra
bo
lic
_f
em

th
er
m
al
2

th
er
m
om

ec
h_
dK

Dataset

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
S

p
ee

d
u

p
 v

s.
 N

au
m

o
v/

JP
L

A
S
IC
_3
20
ks

F
E
M
_3
D
_t
he
rm
al
2

G
3_
ci
rc
ui
t

af
_s
he
ll3

ap
ac
he
2

at
m
os
m
od
d

ca
ge
13

ec
ol
og
y2

of
fs
ho
re

pa
ra
bo
lic
_f
em

th
er
m
al
2

th
er
m
om

ec
h_
dK

Dataset

0

10

20

30

40

50

60

70

80

N
u

m
b

er
 o

f
C

o
lo

rs

CPU/Color_Greedy

GraphBLAST/Color_IS

GraphBLAST/Color_JPL

GraphBLAST/Color_MIS

Gunrock/Color_AR

Gunrock/Color_Hash

Gunrock/Color_IS

Naumov/Color_CC

Naumov/Color_JPL

Implementation

(a) Runtime Comparison (b) Number of Colors Comparison

Fig. 1: Speedup and color count comparison of our implementations on various datasets vs. Naumov et al. implementations

and greedy CPU implementation.

out of the three implementations is slower than Naumov by

1.66×. In terms of number of colors as shown in Figure 1b,

the order of best to worst reverses: maximal independent

set, Jones-Plassman and independent set. This is evidence

of the time-quality tradeoff often seen across graph coloring

algorithms [9]. The latter two need 2.5× and 2.9× more colors

than maximal independent set. Compared to Naumov, 1.9×
fewer colors are used. Compared to the greedy sequential

implementation, maximal independent set yields 1.02× fewer

colors using 2.6× less time.

To explain the differences in runtime, we ran some profiling

of GPU kernels. We find that for maximal independent set

and Jones-Plassman as compared to the independent set, a

second call to GrB vxm ends up taking nearly 50% of

the runtime. For Jones-Plassman in particular, the call on

Line 7 can be optimized by using GrB assign rather than

using a cudaMemcpyHostToDevice operation. For maximal

independent set, the inner loop needs to run potentially for

many iterations, which causes the runtime to increase.

D. Time-quality Trade-off

Figure 2 shows the time-quality tradeoff between different

Gunrock implementations and between different GraphBLAST

implementations. In the case of Gunrock, using a more

compute-intensive implementation such as hashing the color

leads to fewer colors used than independent set. Similarly for

GraphBLAST, using maximal independent set, which as noted

above takes a second call to GrB vxm and an inner loop to

repeat traversals until the independent set is maximal, uses

more time to converge. However once a coloring is found,

it is higher quality than one found using the independent set

algorithm.

E. Scalability Summary using Randomly Generated Graphs
(RGG)

On the synthetic data used for scaling as shown in Fig-

ure 3b, we show the best performers in terms of runtime

from GraphBLAST and Gunrock, which are independent set

implementations in both cases. We see that Gunrock does

better for smaller graphs, which indicates that it has lower

overhead. GraphBLAS begins to do better beyond scale 23

and 24. In terms of numbers of colors as shown in Figure 3d,

the Gunrock implementation requires 1.14× fewer colors.

When comparing colors in Figure 1b, we show that our

GraphBLAST MIS implementation outperforms all other im-

plementations, even generating better color count than a

greedy CPU algorithm. Gunrock’s Hash implementations also

show promising results in the number of generated colors, as

they are able to better utilize colors while resolving conflicts,

and reuse some of the colors assigned in the past iterations.

Gunrock’s IS and AR implementations also generate compa-

rable color counts to Naumov’s JPL implementation.

238

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

1 2 3 10 20 30 100 200 300 1,000

Runtime (ms)

0

10

20

30

40

50

60

70
N

u
m

b
er

 o
f

C
o

lo
rs

1 2 3 10 20 30 100 200 300 1,000

Runtime (ms)

0

10

20

30

40

50

60

70

N
u

m
b

er
 o

f
C

o
lo

rs

ASIC_320ks

FEM_3D_thermal2

G3_circuit

af_shell3

apache2

atmosmodd

cage13

ecology2

offshore

parabolic_fem

thermal2

thermomech_dK

Dataset

GraphBLAST/Color_IS

GraphBLAST/Color_MIS

Gunrock/Color_Hash

Gunrock/Color_IS

Implementation

(a) Number of Colors vs. Runtime for two Gunrock implementations (b) Number of Colors vs. Runtime for two GraphBLAST implementations

Fig. 2: Different implementations offer different tradeoffs between runtime and color count; for both Gunrock and GraphBLAST,

we can generally use a more expensive implementation and achieve better color counts.

VI. CONCLUSIONS

In this paper, we designed and implemented parallel graph

coloring algorithms on the GPU using two different abstrac-

tions: one data-centric (Gunrock), the other linear-algebra-

based (GraphBLAS). We analyzed the impact of variations of

a baseline independent set algorithm on quality and runtime.

We examined how optimizations such as hashing, avoiding

atomics and a max-min heuristic affects performance. We

demonstrated our Gunrock graph coloring implementation has

a peak 2× speed-up and geomean speed-up of 1.3× over a pre-

vious hardwired state-of-the-art implementation that produces

a coloring of similar quality. We showed our GraphBLAS im-

plementation of Luby’s algorithm produces 1.9× fewer colors

than the previous state-of-the-art parallel implementation and

1.014× fewer colors than a greedy, sequential algorithm.

One limitation of this work is that it focuses on comparisons

of different variants of either Jones-Plassman or Luby’s Monte

Carlo heuristic. A possible future research direction would

be to compare these algorithms with Gebremedhin-Manne

on the GPU. Another future research direction would be to

examine how the largest-degree-first heuristic compares with

the randomized algorithms we used. In this work, we primarily

looked at mesh graphs. With power law graphs, is possible

that a random weight initialization would perform worse than

largest-degree first, because random weight initialization will

make it more likely a node with few neighbors is colored

rather than a node with many neighbors being colored as in

the case of largest-degree-first.

ACKNOWLEDGMENTS

We would like to thank Maxim Naumov for explaining

technical details about his implementation. We appreciate the

funding support from the Defense Advanced Research Projects

Agency (Awards # FA8650-18-2-7835 and HR0011-18-3-

0007) and the National Science Foundation (Awards # OAC-

1740333 and CCF-1629657). This work is also supported in

part by the Applied Mathematics program of the DOE Office

of Advanced Scientific Computing Research under Contract

No. DE-AC02-05CH11231, and in part by the Exascale Com-

puting Project (17-SC-20-SC), a collaborative effort of the

U.S. Department of Energy Office of Science and the National

Nuclear Security Administration.

REFERENCES

[1] T. Kaler, W. Hasenplaugh, T. B. Schardl, and C. E. Leiserson, “Execut-
ing dynamic data-graph computations deterministically using chromatic
scheduling,” ACM Transactions on Parallel Computing, vol. 3, no. 1,
p. 2, 2016.

[2] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein, “Register allocation via coloring,” Computer
languages, vol. 6, no. 1, pp. 47–57, 1981.

[3] M. T. Jones and P. E. Plassmann, “Scalable iterative solution of sparse
linear systems,” Parallel Computing, vol. 20, no. 5, pp. 753–773, 1994.

[4] Y. Saad, “ILUM: a multi-elimination ILU preconditioner for general
sparse matrices,” SIAM Journal on Scientific Computing, vol. 17, no. 4,
pp. 830–847, 1996.

[5] F. T. Leighton, “A graph coloring algorithm for large scheduling
problems,” Journal of Research of the National Bureau of Standards,
vol. 84, no. 6, pp. 489–506, 1979.

[6] F. Akman, “Partial chromatic polynomials and diagonally distinct Su-
doku squares,” arXiv preprint arXiv:0804.0284, 2008.

[7] M. McCourt, B. Smith, and H. Zhang, “Sparse matrix-matrix products
executed through coloring,” SIAM Journal on Matrix Analysis and
Applications, vol. 36, no. 1, pp. 90–109, 2015.

[8] T. F. Coleman and J. J. Moré, “Estimation of sparse Hessian matrices and
graph coloring problems,” Mathematical Programming, vol. 28, no. 3,
pp. 243–270, 1984.

[9] A. H. Gebremedhin, F. Manne, and A. Pothen, “What color is your
Jacobian? Graph coloring for computing derivatives,” SIAM Review,
vol. 47, no. 4, pp. 629–705, 2005.

[10] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: GPU graph
analytics,” ACM Transactions on Parallel Computing, vol. 4, no. 1, pp.
3:1–3:49, 2017.

[11] C. Yang, “GraphBLAST library,” http://github.com/gunrock/graphblast,
2015.

[12] M. Naumov, P. Castonguay, and J. Cohen, “Parallel graph coloring with
applications to the incomplete-LU factorization on the GPU,” NVIDIA
Research, Tech. Rep. NVR-2015-001, May 2015.

[13] M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” SIAM Journal on Computing, vol. 15, no. 4, pp. 1036–1053,
1986.

239

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

GraphBLAST/Color_RGG

Gunrock/Color_RGG

Implementation

10,00020,000000000 100,000200,00000 1,000,0002,000,000000000 10,000,00020,000,000,000,000 100,000,000

Number of Vertices

1

2

10

20

100

200

1,000

2,000

10,000
R

u
n

ti
m

e
(m

s)

(a) Runtime vs. Number of Vertices

GraphBLAST/Color_RGG

Gunrock/Color_RGG

Implementation

100,000200,0000,0000,000 1,000,0002,000,000000000 10,000,00020,000,000,000,000 100,000,000200,000,0000,0000,000 1,000,000,000

Number of Edges

1

2

10

20

100

200

1,000

2,000

10,000

R
u

n
ti

m
e

(m
s)

(b) Runtime vs. Number of Edges

GraphBLAST/Color_RGG

Gunrock/Color_RGG

Implementation

10,00020,000000000 100,000200,00000 1,000,0002,000,000000000 10,000,00020,000,000,000,000 100,000,000

Number of Vertices

0

5

10

15

20

25

30

35

40

45

N
u

m
b

er
 o

f
C

o
lo

rs

(c) Number of Colors vs. Number of Vertices

GraphBLAST/Color_RGG

Gunrock/Color_RGG

Implementation

100,000200,0000,0000,000 1,000,0002,000,000000000 10,000,00020,000,000,000,000 100,000,000200,000,0000,0000,000 1,000,000,000

Number of Edges

0

5

10

15

20

25

30

35

40

45

N
u

m
b

er
 o

f
C

o
lo

rs

(d) Number of Colors vs. Number of Edges

Fig. 3: Runtime and number of colors computed by our Gunrock and GraphBLAST implementations as a function of sizes

(vertex and edge counts) in RGG-generated graphs.

[14] M. T. Jones and P. E. Plassmann, “A parallel graph coloring heuristic,”
SIAM Journal on Scientific Computing, vol. 14, no. 3, pp. 654–669,
1993.

[15] A. H. Gebremedhin and F. Manne, “Scalable parallel graph coloring
algorithms,” Concurrency and Computation: Practice and Experience,
vol. 12, no. 12, pp. 1131–1146, Oct. 2000.

[16] M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam, “Parallel
graph coloring for manycore architectures,” in International Parallel and
Distributed Processing Symposium. IEEE, 2016, pp. 892–901.

[17] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering
heuristics for parallel graph coloring,” in Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architectures. ACM,
2014, pp. 166–177.

[18] J. Allwright, R. Bordawekar, P. Coddington, K. Dincer, and C. Martin,
“A comparison of parallel graph coloring algorithms,” Northeast Parallel
Architecture Center, Syracuse University, Tech. Rep, 1995.

[19] D. Bozdağ, A. H. Gebremedhin, F. Manne, E. G. Boman, and U. V.
Catalyurek, “A framework for scalable greedy coloring on distributed-
memory parallel computers,” Journal of Parallel and Distributed Com-
puting, vol. 68, no. 4, pp. 515–535, 2008.

[20] S. Salihoglu and J. Widom, “Optimizing graph algorithms on Pregel-
like systems,” Proceedings of the VLDB Endowment, vol. 7, no. 7, pp.
577–588, 2014.

[21] A. V. P. Grosset, P. Zhu, S. Liu, S. Venkatasubramanian, and M. Hall,
“Evaluating graph coloring on GPUs,” ACM SIGPLAN Notices, vol. 46,
no. 8, pp. 297–298, 2011.

[22] S. Che, G. Rodgers, B. Beckmann, and S. Reinhardt, “Graph coloring
on the GPU and some techniques to improve load imbalance,” in In-
ternational Parallel and Distributed Processing Symposium Workshops.
IEEE, 2015, pp. 610–617.

[23] A. Buluç and J. R. Gilbert, “The combinatorial BLAS: Design, im-

plementation, and applications,” The International Journal of High
Performance Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[24] W. Horn, M. Kumar, J. Jann, J. Moreira, P. Pattnaik, M. Serrano,
G. Tanase, and H. Yu, “Graph programming interface (GPI): A linear
algebra programming model for large scale graph computations,” Inter-
national Journal of Parallel Programming, vol. 46, no. 2, pp. 412–440,
2018.

[25] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat: High
performance graph analytics made productive,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1214–1225, 2015.

[26] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, The
GraphBLAS C API Specification, Nov. 2017, rev. 1.1.

[27] ——, “Design of the GraphBLAS API for C,” in IEEE International
Parallel and Distributed Processing Symposium Workshops, 2017, pp.
643–652.

[28] C. Yang, A. Buluç, and J. D. Owens, “Implementing push-pull efficiently
in GraphBLAS,” in Proceedings of the International Conference on
Parallel Processing, ser. ICPP 2018, Aug. 2018, pp. 89:1–89:11.

[29] T. Mattson, C. Yang, S. McMillan, A. Buluç, and J. Moreira, “Graph-
BLAS C API: Ideas for future versions of the specification,” in IEEE
High Performance Extreme Computing Conference, 2017, pp. 1–6.

[30] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds., Graph
Partitioning and Graph Clustering. American Mathematical Society,
2012.

[31] M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable high
quality graph partitioner,” in IEEE International Symposium on Parallel
& Distributed Processing, 2010, pp. 1–12.

[32] T. A. Davis and Y. Hu, “The University of Florida sparse matrix col-
lection,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1:1–1:25, Nov. 2011.

240

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:28:34 UTC from IEEE Xplore. Restrictions apply.

