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Abstract—In 2013, we released a position paper to launch a
community effort to define a common set of building blocks for
constructing graph algorithms in the language of linear algebra.
This led to the GraphBLAS. We released a specification for the C
programming language binding to the GraphBLAS in 2017. Since
that release, multiple libraries that conform to the GraphBLAS
C specification have been produced.

In this position paper, we launch the next phase of this
ongoing community effort: a project to assemble a set of high
level graph algorithms built on top of the GraphBLAS. While
many of these algorithms are well-known with high quality
implementations available, they have not been assembled in one
place and integrated with the GraphBLAS. We call this project
the LAGraph graph algorithms project and with this position paper,
we put out a call for collaborators to join us. While the initial
goal is to just assemble these algorithms into a single framework,
the long term goal is a library of production-worthy code, with
the LAGraph library serving as an open source repository of
verified graph algorithms that use the GraphBLAS.

Index Terms—Graph Algorithms, Linear Algebra, Graph-
BLAS

I. INTRODUCTION

Graphs are an essential abstraction for a wide range of

problems. There are many ways to represent graphs in graph

analytics. One class of methods defines graphs in terms of

adjacency matrices. Expressing graph algorithms as linear

algebra expressions [1] is a mature subject. Multiple high

performance graph libraries based on sparse linear algebra [2],

[3], [4], [5], [6] have been developed. With this “Graphs

as Linear Algebra” approach established, a community of

researchers came together to define common building blocks

for graphs expressed in the language of linear algebra. They

launched this effort with a position paper [7] in 2013 and

formed the GraphBLAS Forum [8]. After three years of steady

work, the GraphBLAS forum completed the mathematical

formalization of the GraphBLAS [9]. With another one and

a half years of work, the group completed the C language

binding to the GraphBLAS [10].

Currently there are multiple implementations of the Graph-

BLAS C specification. We have learned a great deal about how

to define the operations within the GraphBLAS and how to

implement them efficiently. We are now ready to launch the

next phase of the project: to produce a library of high-level

graph algorithms implemented on top of the GraphBLAS. We

call this library of algorithms LAGraph. Just as we launched

the GraphBLAS project with a position paper, we are launching

this next phase of the project with a position paper.

The goals of the LAGraph effort include, first and foremost,

bringing together the full range of known graph algorithms that

can be constructed with the GraphBLAS. From this collection

we will be able to systematically assess the coverage of graph

algorithms based on linear algebra. This will also serve as raw

material in ongoing studies of the fundamental design patterns

exploited by linear algebra-based graph algorithms.

The basic outline of the LAGraph project is summarized in

Figure 1. The library of algorithms is the single box towards the

middle of the figure. These algorithms use the GraphBLAS C

API which exists as a separate implementation for a wide range

of hardware targets at the bottom of the figure. To motivate

our work and stay aligned with the way data scientists use

graph algorithms, we need to appreciate that people will use

a wide range of languages to access the graph algorithms. A

good library must be able to work whether called directly from

C or indirectly through a wrapper in Python. Furthermore, the

developers of the graph algorithm libraries will need a test

harness to validate the algorithms, I/O utilities, and a build

system. All of these components must be addressed as part of

the LAGraph project.

LAGraph may not be a production-worthy library in its

first incarnation. However, we expect the LAGraph effort to

produce such a library over time. Anticipating that goal, we are

constructing the library “as if” it will be used by data analytics

end-users; that is, by people who need the results from graph

algorithms with little concern for how they are implemented.

This requirement of building a library for end-users as opposed

to a library for graph algorithm researchers has far reaching

implications for the design of this software.

We start the paper with a brief summary of the objects and

operations defined in the C specification of the GraphBLAS. We

then summarize some of the early libraries that implement the

GraphBLAS C specification. Next, we describe the repository

where we will build LAGraph. This is important since the

purpose of a position paper is to attract a community of

researchers to join the effort, which in turn means we want

people to understand how to work with and perhaps contribute

algorithms to the repository. We then discuss the challenges
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Fig. 1: LAGraph Project Overview. The project consists of

a library of graph algorithms and assorted components to

support algorithm development and validation (a test harness

and I/O utilities). It must interface to a wide range of

languages. Underneath these components is a build system,

implementations of the GraphBLAS, and a variety of hardware

targets.

we faced in writing the early version of LAGraph and what it

suggests about future developments needed in the GraphBLAS

themselves. We close with concluding remarks.

II. THE GRAPHBLAS

Consider a graph represented as an n-by-n adjacency matrix

A, where Aij is the weight of the edge from vertex i to vertex

j, and a second k-by-n matrix B representing a subset (of

size k) of the vertices in the graph, such that Bji is 1 if the

jth element of the subset is vertex i (and all other elements

of B are 0). The traditional matrix product B×A over real

arithmetic of these two matrices returns the cost based on

the edge weights of reaching the set of vertices adjacent to

the vertices in B. This fundamental operation can be used to

construct a wide range of graph algorithms.

We extend the range of graph operations by keeping the

basic pattern of a matrix-matrix multiplication, but varying the

operators and the interpretation of the values in the matrices (the

domain). By carefully choosing operators and the domain, we

control the relation between matrix operations familiar in linear

algebra and graph operations, thereby enabling composable

graph algorithms.

In addition to matrix multiplication, the GraphBLAS math

specification defines a range of additional operations over

matrices and vectors. These are summarized in Table I.

In mapping the GraphBLAS as a set of mathematical

operators onto the C programming language we made a number

of fundamental choices [10]. First, the core data structures

required to represent the objects defined by the GraphBLAS

are opaque. The GraphBLAS API defines a contract with

the programmer for how these objects will be used, but the

implementations and underlying data structures are left to the

implementation. This opaqueness is critical if the API is to serve

TABLE I: A mathematical overview of the fundamental

GraphBLAS operations supported in the specification. A, B,

and C are GraphBLAS matrices; u, v, and w are GraphBLAS

vectors; i and j are single indices; i and j are arrays of indices;

⊕ and ⊗ are arbitrary element-wise operators; the element-

wise � operator is used for the optional accumulation with the

output GraphBLAS object where x �= y implies x = x� y;

and Fu() is a unary function. Although not shown here, the

input matrices A and B may be selected for transposition

prior to the operation, and masks can be used to control which

values are written to the output GraphBLAS object.

Operation name Mathematical description
mxm C �= A⊕ .⊗B
mxv w �= A⊕ .⊗ v
vxm wT �= vT ⊕ .⊗A
eWiseMult C �= A⊗B

w �= u⊗ v
eWiseAdd C �= A⊕B

w �= u⊕ v
reduce (row) w �= ⊕

j A(:, j)
apply C �= Fu(A)

w �= Fu(u)
transpose C �= AT

extract C �= A(i, j)
w �= u(i)

assign C(i, j) �= A
w(i) �= u

diverse hardware ranging from CPUs to GPUs to specialized

graph hardware. Second, we defined a non-blocking execution

model that allows lazy evaluation. Ultimately, to optimize

sparse linear algebra software we need to aggressively fuse

operations and even restructure algorithms. This requirement

meant that we had to carefully define when results from a

sequence of GraphBLAS operations must be materialized.

Since the release of the GraphBLAS specification, several

implementations of the GraphBLAS have been developed.

These are briefly described below.

A. SuiteSparse:GraphBLAS

SuiteSparse:GraphBLAS is the first full implementation of

the GraphBLAS standard, first released in November of 2017.

It is available at http://suitesparse.com [11].

The design of a GraphBLAS library is flexible, because its

data structures are opaque to the user. SuiteSparse:GraphBLAS

uses a compressed-sparse vector data structure, in four different

forms. A matrix can be stored in row-major order (CSR), or

column-major order (CSC). Each sparse vector consists of a

sorted list of indices, and the corresponding numerical values.

The sparse vectors are packed together into two arrays, and

another “pointer array” (of size equal to the dimension of the

matrix, say n) keeps track of where each row (or column)

starts. The memory taken is O(n+ e) for a CSR matrix with

n rows or a CSC matrix with n columns, and with e entries.

Most graphs have e = O(n) entries, but some graphs (and in

particular, subgraphs) can be hypersparse [12], with e � n. In

the hypersparse form, the pointer array itself becomes sparse,

and empty vectors take no space at all. The space is reduced

to O(e), so that matrices with enormous dimensions can be
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created, as long as e � n. SuiteSparse:GraphBLAS exploits

hypersparsity automatically, and all methods can operate on

all four matrix formats in any combination.

The ability to incrementally modify a graph is critical in

many applications. GraphBLAS includes two operations that

can make small incremental changes to a graph/matrix: namely

GrB_setElement and GrB_assign. It would be exceedingly

slow to insert or delete a single entry in a CSR or CSC format,

taking O(n+ e) time per entry inserted or deleted. Instead,

the non-blocking aspect of GraphBLAS is exploited. Fast

deletion of entries is handled by creating zombies, which are

entries tagged for later deletion. Fast insertion is handled with

pending tuples, which is a separate unordered list of (i, j, aij)
for each new entry. When a matrix operation occurs (such

as matrix multiply), all zombies are killed and all pending

tuples are assembled, in a single O(n + e + p log p) step

(for p pending tuples), or O(e + p log p) in the hypersparse

case. As a result, it is just as fast to use a sequence of e
GrB_Matrix_setElement operations to build a matrix, as it

is to create an array of e tuples and use GrB_Matrix_build.

Internally, SuiteSparse:GraphBLAS is building the list itself,

for the user, and then does a GrB_Matrix_build when the

matrix is completed.

To enable high-performance matrix-matrix multiply, a code

generation mechanism is used to build functions for each

semiring that can be created with built-in operators. The

functions can rely on Gustavson’s method [13], a dot product

method, and a heap-based method [14], all with masked

variants. With this code generation mechanism, 6 functions

containing 2 versions of Gustavson’s method (no mask /

with mask), three versions of the dot product (no mask /

with mask / with complemented mask) and one version of

the heap method, automatically expand into the 960 unique

semirings supported by the built-in operators in GraphBLAS

SuiteSparse:GraphBLAS adds a few extensions to the set of

operators; Using the built-in types and operators from the

GraphBLAS C API, 600 unique semirings can be constructed.

All of them are as fast, or much faster, than C=A*B in MATLAB.

Submatrix assignment (C(I,J)=A) can be 100× faster than in

MATLAB, even when non-blocking mode is not exploited.

A current prototype of the package adds an early exit

mechanism for the MIN, MAX, OR, and AND monoids, where

a dot product can terminate as soon as a terminal value is found

in the result (true for OR, for example). This will enable a fast

direction-optimizing BFS [15] to be written in GraphBLAS.

The “pull” is a dot product, and the “push” a saxpy-based

operation (Gustavson’s or the heap method).

Since its creation was commissioned as the GraphBLAS

reference implementation, testing is a vital component to the

package. In SuiteSparse:GraphBLAS, each GraphBLAS opera-

tion was written twice: once in high-performance algorithms

in C, and again in a very simple and short MATLAB script,

using dense matrices with the required type. The pattern in

the MATLAB version is held as a separate Boolean matrix.

For example, GrB_assign requires about 3,908 lines of C

(not counting comments), but only 161 lines in MATLAB. Of

those 161 lines, 33 are for error-checking that do not need

to be considered when determining conformance to the spec.

The MATLAB functions are not intended to be fast. Instead,

they exactly mimic the GraphBLAS API Specification, line

by line, so they can be visually inspected for conformance

to the spec. For example, matrix multiply is written with a

brute-force triply-nested for loop. Then, to test the package,

each computation is done both in SuiteSparse:GraphBLAS

(via a MATLAB interface) and in the MATLAB mimic. The

tests pass only if the results are identical in both value and

pattern (even with identical floating-point roundoff error, in

most cases).

The package is extremely robust and production-ready. It

is fully compliant with the GraphBLAS C API. Excluding

SuiteSparse-specific extensions and beta releases, there have

been only 3 bugs in the entire package since its first release,

two of which would be triggered in only rare cases. All three

bugs are fixed, and the current version has no known bugs in

any part of the code.

The current release is single-threaded, but an OpenMP

implementation is in progress. SuiteSparse:GraphBLAS appears

in Debian and Ubuntu Linux distros, and has been released as

part of the RedisGraph database module of the Redis database

systems, by RedisLabs, Inc. [16].

B. IBM GraphBLAS

The IBM GraphBLAS implementation was

announced at IPDPS 2018 and made available at

https://github.com/IBM/ibmgraphblas, fulfilling

the GraphBLAS C API requirement of two conforming

implementations, and promoting that specification from

provisional to definitive. The approach adopted by the

development team was heavily influenced by their experience

with IBM’s Graph Programming Interface [4], [17].

Among the various objectives of the IBM implementation,

we note the desire to experiment with an implementation that

allows multiple data representations and a layered approach

to algorithms, keeping a GraphBLAS API layer on top of

a more fundamental back-end layer that performs the heavy

computation.

Use and operation of the IBM GraphBLAS is straightforward.

The application programmer has access to a C11-compliant

include file (GraphBLAS.h) that defines the API according

to the specification. This include file exposes nothing of the

internals of the run-time. The run-time itself is written in C++

and packaged as a library (libibmgraphblas.so) with C

language bindings. The choice of C++ as the implementation

language has led to a simple and concise specification-

compliant implementation.

One of the jobs of the GraphBLAS.h include file is to convert

the polymorphic version of the API into the nonpolymorphic

one. The nonpolymorphic methods are then directly supported

by the library. Conversion of the polymorphic interface is

accomplished through standard C preprocessor features, pri-

marily in supporting number of arguments polymorphism,
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in combination with the standard C11 language Generic

construct to support type polymorphism.

As previously mentioned, the IBM GraphBLAS library is

implemented in C++. The API methods are declared to have

a C interface, so that C user programs can bind to them as

specified. Objects internal to the library are declared as C++

classes, with member methods doing the actual work. We want

to emphasize that this is a C++ implementation of a C API,

and not an API for GraphBLAS that exploits C++ features, as

other efforts are pursuing [18].

The contents of a GraphBLAS vector object are imple-

mented using standard C++ containers. An unordered set

of indices (uset<GrB Index>) is used to represent the

structure of the vector, while an unordered map of indices

to pointers (umap<GrB Index,void*>) represents the ele-

ments. (Currently, uset and umap are just renames for the

std::unordered set and std::unordered map standard

containers of C++, but one could use more specialized

implementations.)

Similarly, the contents of a matrix are represented both

as a standard C++ container vector of rows and a standard

C++ container vector of columns. Accessor methods enforce

consistency of both representations.

In the current IBM GraphBLAS, all methods are fully

blocking. That is, the methods return only after all computations

are fully performed (or an error is detected). Since the

GraphBLAS nonblocking mode allows for deferred execution

but does not require it, this behavior complies with the

specification.

We finish this brief overview of the IBM GraphBLAS with

a discussion of error handling, as we believe it reflects an

important aspect of the interoperability between a C API and a

C++ implementation. The GraphBLAS C API defines two kinds

of errors: API errors and execution errors. API errors reflect

incorrect usage of the API (for example, passing parameters

that are not valid or consistent). Execution errors indicate

that something went wrong during the actual execution of a

method, and can be caused either by programmer error or by

environment issues (for example, not enough memory).

In the IBM GraphBLAS run-time, API errors are detected

through explicit checks in the implementation of each method

in the API layer (the front-end). Execution errors, on the

other hand, occur inside the member methods of the various

objects internal to the library (the back-end). Those methods,

following standard C++ practice, use exceptions to signal an

error. To transform those exceptions into proper GraphBLAS C

API return codes, the body of each GraphBLAS API method

is wrapped by a try/catch block, which then returns the

GraphBLAS execution error code corresponding to the caught

exception.

C. GBTL: GraphBLAS Template Library

The first version of the GraphBLAS Template Library

(GBTL) was written in C++ when the GraphBLAS C API

project was just beginning. It was used, in part, to study early

ideas under discussion in the specification process and was

released as a proof of concept prior to the finalization of the

GraphBLAS API Specification [19], [20]. With the release of

the GraphBLAS C API Specification [10] in 2017, GBTL was

updated to conform to the mathematical behavior defined by the

specification and released as version 2.0 [18]. Unlike the C API

Specification, GBTL is written in C++ and makes judicious use

of templates to make the generic aspects of the GraphBLAS

specification easier to implement and more natural for the

C++ programming language. When the GraphBLAS language

committee starts its work on the C++ language binding to the

GraphBLAS, GBTL will be submitted as a proposed starting

point for the discussion.

Central to GBTL’s design is the concept of a separation

of concerns between implementation of algorithms written in

terms of the GraphBLAS primitives and the implementation

of those primitives on a targeted hardware platform. This

separation of concerns is defined by the GraphBLAS API

Specification as illustrated in Figure 1. Above this API, GBTL

has developed and includes a collection of graph algorithms

written against its C++ API and has already been shown to be

easily translated to the C API (compare Figures 2(c) and 2(d)).

Below the separation/API, different implementations of the

GraphBLAS library can be supported for different hardware

architectures (referred to as “backends”). In this way we

verify that algorithms written once against the API can run on

different targeted hardware. One backend that is provided with

Version 2.0 of GBTL implements a mathematically correct

version of the C API specification and serves as a reference

implementation for verifying correctness. It runs in a single

thread on a CPU (an earlier version of GBTL also had a GPU

implementation). Other backend implementations are currently

under development to optimize performance, use multiple

threads, and to target specialized computer architectures.

D. PyGB: python DSL for GraphBLAS

Another development effort closely related to GBTL is a

DSL (domain-specific language) in Python called PyGB [21].

The goal for PyGB is to closely resemble the GraphBLAS

mathematical notation found in the GraphBLAS math spec [9].

PyGB is a framework designed and implemented to dispatch

dynamically generated and compiled templated classes that

make calls into native GBTL code. It demonstrates how

Python’s syntax and dynamic execution provides a high-level

abstraction with minimal performance penalty. While we leave

a detailed discussion of PyGB to elsewhere [21] we provide a

level-BFS function using PyGB in Figure 2.

Notice how the meaning of the code is straightforward since

the DSL closely tracks the notation from the GraphBLAS math

spec. We believe in the long run, the future of graph algorithms

will depend heavily on such DSLs.

E. GraphBLAST GraphBLAS

GraphBLAST [22] is the first high-performance GPU (graph-

ics processing unit) implementation of GraphBLAS. Inspired by

the design of GBTL, the architecture of GraphBLAST is C++
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1 Input: graph, frontier, levels
2 depth ← 0
3 while nvals(frontier) > 0:
4 depth ← depth + 1
5 levels[frontier] ← depth
6 frontier<¬levels,replace> ← graphT ⊕.⊗ frontier
7 where ⊕.⊗ =

⊕
.
⊗

(LogicalSemiring)

(a) Pseudocode

1 def bfs(graph, frontier, levels):
2 depth = 0
3 while frontier.nvals > 0:
4 depth += 1
5 levels[frontier][:] = depth
6 with gb.LogicalSemiring, gb.Replace:
7 frontier[˜levels] = graph.T @ frontier

(b) PyGB

1 template<class Mat, class Frontier, class Levels>
2 void bfs(Mat &graph, Frontier frontier, Levels &levels)
3 {
4 GrB::IndexType depth = 0;
5 while (frontier.nvals() > 0) {
6 ++depth;
7 GrB::assign(levels, frontier, GrB::NoAccumulate(),
8 depth, GrB::AllIndices(), false);
9 GrB::mxv(frontier, GrB::complement(levels),

10 GrB::NoAccumulate(),
11 GrB::LogicalSemiring<GrB::IndexType>(),
12 GrB::transpose(graph), frontier, true);
13 }
14 }

(c) GBTL C++

1 void bfs(GrB_Matrix graph,
2 GrB_Vector frontier,
3 GrB_Vector *levels)
4 {
5 GrB_Index n, nvals;
6 GrB_Matrix_nrows(&n, graph);
7 GrB_Vector_nvals(&nvals, frontier);
8 GrB_Semiring LogicalSemiring;
9 GrB_Descriptor Desc_TranA_ScmpM_Replace;

10 //...
11 GrB_Index depth = 0;
12 while (nvals > 0) {
13 ++depth;
14 GrB_assign(*levels, frontier, GrB_NULL,
15 depth, GrB_ALL, n, GrB_NULL);
16 GrB_mxv(frontier, *levels, GrB_NULL,
17 LogicalSemiring, graph, frontier
18 Desc_TranA_ScmpM_Replace);
19 GrB_Vector_nvals(&nvals, frontier);
20 }
21 }

(d) GraphBLAS C API

Fig. 2: Level-based BFS traversal in math pseudocode, PyGB,

GBTL C++, and using the GraphBLAS C API.

based and maintains a separation of concerns between a top-

level interface defined by the GraphBLAS C API specification

and a low-level backend.

One novel aspect of GraphBLAST is its supports

for performance-oriented optimizations such as direction-

optimization (also known as push-pull traversal), which was

discovered by Beamer, Asanovic and Patterson [15] and general-

ized by Shun and Blelloch [23] to other graph algorithms. Yang,

Buluç and Owens [24] show that this optimization is key for a

GraphBLAS implementation to meet the performance of state-

of-the-art graph frameworks on the GPU such as Gunrock [25].

In each iteration of an GrB_mxv, the GraphBLAST backend

checks whether the vector sparsity has crossed a threshold k. If

it has gone above the threshold, then the traversal will switch

from push to pull. If it has gone below the threshold, then the

traversal will switch from pull to push. If neither outcome has

occurred, then it will use the traversal it used in the previous

iteration.

To support direction-optimization, the GraphBLAST backend

maintains a SparseVector and DenseVector object as shown in

Figure 3. The push traversal is performed using Gustavson’s

method as a sparse-matrix sparse-vector multiply (SpMSpV)

between the SparseVector and the adjacency matrix transpose

in CSC format. The pull traversal is performed in a dot-product

manner as a sparse-matrix dense-vector multiply (SpMV)

between the DenseVector and the adjacency matrix in CSR

format. This raises the issue of having to keep around two

copies of each GrB_Matrix object when it is not symmetric.

An environment variable is used to control whether the user

wants this performance-oriented storage, or whether they want

a more memory-inexpensive storage of only CSR or only CSC

in which case the direction-optimization feature is disabled.

Direction-optimization is a good example of the power

of abstracting away implementation details, and the linear

algebraic approach to graph analytics is at its most powerful.

The end user has two conflicting desires:

1) They want to communicate their request abstractly enough

that they do not have to decide whether the matrix-vector

multiply is implemented as push, pull or any of the myriad

possible ways.

2) They want their computation to be described specifically
enough that the computer can optimize for the best

approach for doing the computation.

This desire is met by GrB_mxv, which is at the same time

abstract enough to not limit the computer in choosing push

traversal when it should be choosing pull traversal, yet specific
enough that the computer has enough information to cut corners

and pick the best algorithm.

Table II shows a comparison of how many lines of code it

takes an implementation of GraphBLAS to express a given

algorithm in C++. It is compared with two state-of-the-art graph

frameworks in shared memory, the aforementioned Ligra [23]

and GraphIt [26], which is a DSL designed for expressing

graph algorithms.
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Fig. 3: GraphBLAST Vector UML diagram.

Algorithm Ligra [23] GraphIt [26] GraphBLAS

Breadth-first-search 29 22 25
Single-source shortest-path 55 25 25
Local graph clustering 84 N/A 45

TABLE II: Comparison of lines of C++ application code

counted by ‘cloc’ except for numbers of GraphIt, which

come from the paper [26]. N/A means not implemented. The

specific GraphBLAS implementation for this comparison is

GraphBLAST [22].

III. LAGRAPH REPOSITORY

The hypothesis underlying the GraphBLAS is that algorithm

designers can focus on expressing their algorithms in terms

of the high level linear algebra operations defined in the

GraphBLAS while leaving low level optimizations for any

particular hardware platform to the implementation of the

GraphBLAS. Ultimately, we want hardware vendors to be re-

sponsible for creating highly tuned versions of the GraphBLAS

specialized to the features of their systems. Kumar et al. [27]

show that mitigating the adverse impact of memory latency

on performance of algorithms for large graph can lead to

significant improvements. Such optimizations require detailed

knowledge of the underlying system, and hence the low-level

optimizations are best left to hardware vendors. Furthermore,

a tuned linear algebra library delivers better performance than

straight-forward textbook implementation on many basic graph

algorithms [28].

Algorithm designers will naturally wonder how much

performance is lost due to the use of a high level API such as the

GraphBLAS. As shown in [28], a linear algebra implementation

brings inherent efficiency advantages to graph algorithms due

to the more structured access to data afforded by the linear

algebra formulation [28]. The GraphBLAS API is more general,

but we expect its implementations to retain or improve upon

the efficiency advantages. This is an untested hypothesis, since

until now, we have not had multiple implementations of the

GraphBLAS API tuned to the features of a range of platforms.

Testing this hypothesis of the performance potential afforded

by the GraphBLAS is a major outcome we anticipate from the

LAGraph project. By collecting high level graph algorithms and

validating them across an engaged community, we will produce

the library of algorithms needed to evaluate the effectiveness

of the GraphBLAS approach.

Before we can conduct such experiments, however, we

need to collect graph algorithms implemented on top of

the GraphBLAS. We have created a GitHub repository at

https://github.com/GraphBLAS/LAGraph for members of the

LAGraph community to use to contribute GraphBLAS algo-

rithms. The basic elements of the repository include:

• A Build System for creating the LAGraph library and the

test routines.

• A library of utilities including loading matrices from disk

in Matrix Market format [29], evaluating results, and

creating random test matrices.

• A directory of graph algorithms.

• A directory holding a test harness for each algorithm.

We will write documentation, a programmer’s reference

guide and define procedures for how people can add new

algorithms.

IV. DISCUSSION

We are early in the LAGraph project. At this point, we’ve

defined the basic structure of the repository and the overall goals

of the project. We have built an early framework for testing and

core utility routines to support software development. Finally,

we assembled a few algorithms which we are using to test the

basic structure of the software system.

Even at this early phase of the project, we have learned

a great deal about how the GraphBLAS will interact with

end-users. The objects manipulated by the GraphBLAS are

opaque. A GraphBLAS implementation is given complete

freedom in how data structures underlying the GraphBLAS are

implemented. A graph algorithm, however, uses GraphBLAS

as part of a processing pipeline. For example, data may exist

in data frames. A subset of the data is collected and filtered

to produce relationships represented by a graph. Properties of

the graph are computed and based on the result a new branch

in the processing pipeline may be accessed.

The key here is that graphs inside the GraphBLAS are

opaque, but externally they are anything but opaque. This

suggests that we need to define functions to import and export

data in standard sparse array formats into LAGraph. The

initial thinking was that this import functionality would be

part of LAGraph and not the GraphBLAS. The only way to do

that, however, is if we repacked the input sparse format into

separate arrays for column indices, row indices, and values
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and then use GrB_Matrix_build to construct the GraphBLAS

matrix object. This is extremely inefficient. We need a way

to directly import arrays in standard sparse formats, such as

CSR/CSC (Compressed Sparse Row/Column) formats, into the

GraphBLAS and since the GraphBLAS data types are opaque,

this can only be done as a GraphBLAS routine.

Graph algorithms do not occur in isolation. The LAGraph

library, therefore, needs to return a handle to an opaque

GraphBLAS object so it can be used without incurring

copy overhead in subsequent graph operations. Given the

nonblocking execution model, this raises interesting design

questions about how memory consistency between the library

and the application is managed.

Graphs can be quite large. Hence, the default mode should

avoid copying sparse arrays input to LAGraph into a separate

memory region to hold the opaque GraphBLAS object. We

believe it is important that the memory for the input array be

reused to hold the GraphBLAS object as much as possible.

This means the input array is often “destroyed” (from the

perspective of LAGraph, another external library, or the user

application) and “realloc”ed for the GraphBLAS opaque object.

In the interest of performance and efficient use of memory

resources, the above violates the separation of concerns between

application and library code expected in well engineered

software. There is also the question of communicating to the

library routine how the input sparse array was allocated in the

first place so the right deallocator can be used.

A draft of SuiteSparse:GraphBLAS includes a working and

fully-tested implementation of the import/export feature, using

a strategy much like the “move constructor” of C++. For

the export of a CSC matrix, for example, three arrays are

removed from the GraphBLAS matrix A: a pointer array Ap

of size n+1, an index array Ai of size e, and a values array

Ax. The row indices of the jth column of the matrix appear

as the list Ai[Ap[j]...Ap[j+1]], and the values are in the

same locations in Ax. This format is identical to the simple

CSC sparse matrix data structure in CSparse [30], except that

GraphBLAS allows for many built-in types and arbitrary user-

defined types.

The remains of the GraphBLAS object A are then deleted,

but all of its content is now “owned” by the external library

(LAGraph, say), which is then responsible for freeing these

three arrays. Assuming that the opaque GraphBLAS object

A is already in the CSC format, the export takes just O(1)
time, and no new memory is allocated. The external library

(LAGraph, in particular) now has access to the graph. If the

GraphBLAS implementation does not support the CSC format

in its internal opaque data structure, it can allocate these arrays,

populate them, and then free A. The effect is the same; only

the performance differs. Opacity is maintained, while at the

same time reducing time required for the export from Ω(e)
(for GrB_extractTuples) to as little as O(1).

The import is symmetric with the export: LAGraph (or any

other external library) passes in the three arrays Ap, Ai, and Ax,

which are then either incorporated as-is into the GrB_Matrix A

(taking O(1) time), or copied and freed (taking O(e) time and

memory). Either way, the three arrays are now owned by

GraphBLAS, not the external library, and would be freed at

some point no later than GrB_free(&A). Since the matrix A

is opaque, the GraphBLAS library can select whatever method

it chooses to take ownership of Ap, Ai, and Ax: a copy (in

O(e) time, or a move construction in O(1) time. It may choose

later to realloc these arrays if the number of entries needs

to grow.

After an export of A, and then an import of the same arrays,

the GraphBLAS matrix A is perfectly reconstructed, ideally

in a total of O(1) time. SuiteSparse:GraphBLAS supports the

import/export of all four of its formats: CSR, CSC, and their

hypersparse variants.

A malloc of these Ap, Ai, and Ax arrays by an external

library followed by freeing the same space inside GraphBLAS

with GrB_free(&A) requires both libraries to agree on using

the same malloc/free routines. To do this, the GraphBLAS

API would need to be augmented to allow an external library

to select which malloc/free routines should be used. This

is essential for a MATLAB interface, since a MATLAB

mexFunction must use mxMalloc and mxFree. With the

import/export feature, sparse matrices can be passed between

MATLAB and GraphBLAS in O(1) time, unless typecasting

is required. MATLAB supports all of the built-in types

of GraphBLAS, plus double complex, but only for dense

matrices. For sparse matrices in MATLAB, only double and

double complex are available. A MATLAB interface to the

GraphBLAS is in progress. If the import/export feature is

added to the GraphBLAS C API (as is being considered), this

MATLAB interface would interoperate with any GraphBLAS

library that is compliant with the spec.

The point of these issues is that in designing an effective

library, there are a host of complicated issues to resolve. A

major part of the research contribution of this project will be

how we solve these issues.

V. ALGORITHMS TARGETED BY LAGRAPH

Many graph algorithms have been successfully implemented

in the language of linear algebra. The following is a list of key

algorithms and representative implementations; emphasizing

that this list is not exhaustive.

• Breadth-first search (BFS) [31], [19], [11], including the

direction optimizing BFS [24],

• Shortest-path (both single-source [22], [32], [19] and all-

pairs [33]) calculation,

• Centrality measures, such as Betweenness centrality [2],

• Triangle counting and enumeration [34], [35] as well as

k-truss enumeration [36], [37],

• Connected components [38],

• PageRank [39],

• Graph coloring [40],

• Subgraph counting [41],

• Maximal [42] and maximum [43] cardinality matching

on bipartite graphs,

• Maximal independent set [44], [22].

282

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:48:14 UTC from IEEE Xplore.  Restrictions apply. 



Machine learning algorithms are also implemented using

libraries that are in the spirit of GraphBLAS:

• Clustering, such as Markov clustering [45] and peer-

pressure clustering [46],

• Deep neural network inference [47],

• Collaborative filtering using Stochastic Gradient De-

scent [39].

Finally, there are algorithms we consider to be important

but has so far not been implemented using a GraphBLAS-like

library:

• A* search,

• Graph neural network training and inference,

• Branch and bound,

• Graph kernels for supervised learning.

VI. CONCLUSION

The GraphBLAS forum started its work in 2013 to standard-

ize the building blocks for graph algorithms formulated from

linear algebra expressions [7]. We now have a C specification

for the GraphBLAS [10] and multiple implementations [11],

[17], [18]. The next step in this journey is to define a library of

high level graph algorithms that are based on the GraphBLAS.

The GraphBLAS was a community effort launched by a

position paper. This is a position paper to launch LAGraph

project, our community effort to collect and validate 1) a set

of high quality basic graph algorithms that run on top of

the GraphBLAS, and 2) support libraries for development of

graph analytics applications. Example of support libraries are

I/O, generation of scale-free graphs, basic measurements on

graphs, and changing representation of graphs. We urge readers

interested in joining us as we work on LAGraph to contact

any of the authors of this position paper.
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[12] A. Buluç and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in IEEE International Symposium on Parallel
and Distributed Processing, April 2008, pp. 1–11.

[13] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” ACM Trans. Math. Softw., vol. 4, no. 3, pp.
250–269, 1978.
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