
You’ve Got Mail (YGM): Building Missing
Asynchronous Communication Primitives

Benjamin W. Priest∗†, Trevor Steil∗‡, Geoffrey Sanders∗, Roger Pearce∗
∗Center for Applied Scientific Computing; Lawrence Livermore National Laboratory

†Thayer School of Engineering; Dartmouth College
‡School of Mathematics; University of Minnesota

benjamin.w.priest.th@dartmouth.edu; steil016@umn.edu; sanders29@llnl.gov; rpearce@llnl.gov

Abstract— The Message Passing Interface (MPI) is the de
facto standard for message handling in distributed computing.
MPI collective communication schemes where many proces-
sors communicate with one another depend upon synchronous
handshake agreements. This results in applications depending
upon iterative collective communications moving at the speed
of their slowest processors. We describe a methodology for
bootstrapping asynchronous communication primitives to MPI,
with an emphasis on irregular and imbalanced all-to-all com-
munication patterns found in many data analytics applications.
In such applications, the communication payload between a pair
of processors is often small, requiring message aggregation on
modern networks. In this work, we develop novel routing schemes
that divide routing logically into local and remote routing. In
these schemes, each core on a node is responsible for handing all
local node sends and/or receives with a subset of remote cores.
Collective communications route messages along their designated
intermediaries, and are not influenced by the availability of cores
not on their route. Unlike conventional synchronous collectives,
cores participating in these schemes can enter the protocol when
ready and exit once all of their sends and receives are processed.
We demonstrate, using simple benchmarks, how this collective
communication improves overall wall clock performance, as well
as bandwidth and core utilization, for applications with a high
demand for arbitrary core-core communication and unequal
computational load between cores.

Index Terms—Distributed Computing, Asynchronous Commu-
nication, MPI

I. INTRODUCTION

Traditional high-performance computing (HPC) applica-

tions, such as solving systems of partial differential equations,

are solvable in a scalable manner using the principles of the

bulk-synchronous parallel (BSP) model, in which an algorithm

proceeds in supersteps. During a superstep, processors perform

a portion of computation, followed by a synchronization phase

in which processors exchange the data to perform the next

superstep. To scale, these algorithms use the regular structure

in problems and the large computation to communication ratio.

As HPC grows to include more diverse problems, these

assumptions do not necessarily hold. For instance, graph

algorithms are characterized by a low ratio of computation to

Priest and Steil performed this work while visiting Lawrence Livermore
National Laboratory. Correspondence should be sent to rpearce@llnl.gov.
Source code for YGM is planned to be released open source and available at
http://github.com/LLNL/ygm

data access, have irregular structures, and are completely data-

dependent [1]. Because of this, many modern HPC problems

do not lend themselves nicely to a BSP solution.

In this paper, we introduce You’ve Got Mail (YGM), a

pseudo-asynchronous communication protocol built on top of

MPI in C++. Programmers using YGM make use of a mailbox

abstraction to perform point-to-point and broadcast communi-

cations. During the computation, users queue messages into

the mailbox. When the mailbox becomes full, the processor

enters a communication context in which it sends and receives

all of its messages. After sending and receiving its messages,

the processor drops back into its computation, potentially

while other processors are still communicating. This pseudo-

asynchronicity prevents the speed of all processors from being

explicitly tied to the slowest processor, while also preventing

a slow processor from running out of memory due to an

accumulation of unhandled messages.

YGM allows point-to-point messages as well as broad-

casts. Asynchronous broadcasts are particularly useful in cases

where some amount of state is replicated across processors,

such as when using vertex cuts in graph algorithms [2]. In

these cases, synchronization can be handled by broadcast

operations rooted at a particular processor.

YGM is currently being used to handle communications

for several projects at LLNL. YGM has been incorporated

into HavoqGT, LLNL’s asynchronous graph library [3]. It

was also used in the recent Graph500 submission on Sierra

at LLNL. The Graph500 uses breadth-first search (BFS) and

single source shortest path (SSSP) to benchmark the graph

processing capabilities of computer systems [4]. The recent

submission used 2048 compute nodes on Sierra (CPU-only,

roughly half of the system) to perform a BFS on a graph with

242 vertices, the largest submission to date.

We begin in Section II by describing similar communication

layers. In Section IV, we present the important design features

of YGM. In Sections V and VI, we present some sample

applications to demonstrate the use and scalability of YGM.

II. RELATED WORK

YGM is conceptually similar to Active Pebbles, a pro-

gramming and execution model that allows programmers to

naturally express solutions to irregular, data-driven problems

221

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00045

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

[5]. Active Pebbles uses AM++ [6] as its underlying active

message library for communication. AM++ asynchronously

sends messages with remote procedure call (RPC) semantics

and is built on top of MPI. It provides optimizations through

message coalescing and message reduction. Messages are

sent in epochs, making computations proceed similarly to

traditional BSP algorithms. However, synchronizations are

implicitly handled by AM++, and the communication phase

can be made to contain the majority of computational work.

YGM provides many of the same characteristics. Programs

written using YGM create a mailbox with a function defin-

ing the behavior for received messages and a mailbox size.

When the mailbox is full, it enters its communication context

in which messages are exchanged between mailboxes. The

mailbox’s receive function is called on incoming messages,

which can spawn additional messages, creating data-dependent

synchronizations similarly to AM++ and Active Pebbles. Like

AM++, YGM provides message coalescing to better utilize

network bandwidth.

There are several major differences between YGM and

Active Pebbles. YGM is written as a transport layer without

remote procedure call semantics. YGM provides message-

routing schemes designed to effectively use shared memory

for coalescing messages originating from various cores on the

same compute node and to minimize the number of compute

nodes any individual core must send messages to. These

schemes could also be implemented in Active Pebbles.

The last major difference is the inclusion of asynchronous

broadcast operations. These broadcasts provide effective meth-

ods of lazy synchronization across cores using the underlying

asynchronous send operation. In a typical RPC system, the no-

tion of broadcasts is not natural as it would entail performing

the same computation at all cores.

There have also been examples of constituent pieces of

YGM in software developed for specific applications. HipMer

[7], [8], provides a parallel version of Meraculous [9], a

de novo genome assembler. HipMer’s process for identifying

frequent k-mers is similar to how we identify high-degree

vertices in graphs, and can likely benefit from using YGM.

We also see a behavior similar to our mailboxes being used in

constructing a distributed de Brujin graph, where each process

keeps a buffer of messages to send to every other process, and

a buffer is sent once it reaches a specified size. This application

could likely benefit from the additional message routing of

YGM.

Another instance of YGM features in previous work is in

the node aware parallel sparse matrix-vector multiplication

(NAPSpMV) [10]. NAPSpMV provides message coalescing

at source and destination compute nodes by using knowledge

of a system’s topology. The exact choice of intermediate

destinations for communication in NAPSpMV will depend

on the matrix being used in order to provide communication

balance. YGM provides a more flexible design that only

depends on the topology and is not application dependent.

These optimizations could be incorporated by constructing

additional MPI communicators.

III. ALL TO ALL ASYNCHRONOUS ROUTING

We focus our analysis on asynchronous variants of MPI’s

ALLTOALL collective. Each of these variants adopt a different

routing protocol, each of which takes advantage of a logical

distinction between local and remote routing. We use the term

local to refer to point-to-point communications wherein the

source and destination processes reside on the same compute

node. We meanwhile use remote to refer to the converse situa-

tion, where the endpoints of a message exist on different nodes.

The key insight to this analysis is that remote communication

requires the transmission of messages over a wire, whereas

local communication is handled in shared memory of a single

machine.

In general, we assume that remote communication is bit-for-

bit more expensive in terms of time than local communication.

Furthermore, on many HPC interconnects transmitting many

small messages is less efficient than bundling larger messages

together. Hence, it is desirable to route messages in such a way

that remote communications are both bundled and transmitted

in as few discrete messages as possible.

MPI’s ALLTOALL and ALLTOALLV collectives handle the

arbitrary transmission of messages within a group. While there

are many known methods to boost the efficiency of these

collectives, the particulars are implementation dependent [11].

One notable feature of these collectives, irrespective of imple-

mentation, is that they are synchronous - all engaged processes

enter the same program context and execute the ALLTOALL

routine at once. This feature allows implementations to main-

tain protocol guarantees, such as guaranteeing the send and

receive orders match, while optimizing transmission based

upon the send distribution and message sizes. However, it also

results in issues in applications with an uneven distribution of

communication and/or computation load across processes. For

example, if one process takes much longer than the others

to reach the communication context, the others simply wait

on it. Similarly, if one process is the recipient of a large

proportion of the total communication in an exchange that

reoccurs frequently, then it will fall behind other processes

which must then wait on it. This can result in poor resource

utilization, both in terms of CPU and bandwidth as many

processes are left idle while waiting.

The other extreme is to handle all communication with point

to point communication by posting MPI RECVs and SENDs

for each message generated over the course of the application.

In this way, processes wait only upon their immediate commu-

nication partners, and so processes that engage in a relatively

low volume of communication do not experience delays due

to slow or more heavily utilized processors with which they

need not communicate. Relying upon fully point-to-point

communication gives us asynchronicity, but at the expense

of potentially increasing remote communication bandwidth

requirements.

We advocate a middle ground similar to the non-blocking

MPI IALLTOALLV [12]. In our suite of asynchronous collec-

tives, participants can begin the process of sending messages

222

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

as soon as they enter the appropriate program context and

leave as soon as they have received all messages. These

asynchronous collectives also execute routing in local and

remote stages. The objective of these routing strategies is

to minimize the number of discrete remote messages and

channels, improving bandwidth utilization by reducing over-

head. They also constrain the maximum number of direct

communication partners for each processor, meaning that most

messages are received by at least one intermediary during

transmission. We evaluate three different routing protocols:

node local performs a local exchange of messages before a

remote exchange, node remote performs a remote exchange

before a local exchange, and node local node remote or NLNR
performs a local exchange, a remote exchange, and a final local

exchange. We describe these protocols in detail below.

Throughout, we assume that there are N nodes participating

in the protocol. We identify each node with an offset in [N].
Here we use the notation [z] = {1, 2, . . . , z} for z ∈ Z+. We

will further assume that each participating node holds the same

number of cores C, similarly identified with an offset in [C].
We assume without loss of generality that N is a multiple of C.

We address a core c on node n by the tuple (n, c) ∈ [N]× [C].
When discussing remote communication, we will use the

term communication channel to refer to a partitioning of cores

such that the cores in each partition communicate remotely

only with other cores in the same partition.

A. Exchange Phases

All of the protocols described below proceed in a series of

exchanges. An exchange consists of a subset of processes par-

ticipating in the collective passing of messages about amongst

each other. Each member of an exchange may be responsible

for further communication to other uninvolved processes in a

later exchange. We call these forwarding processes intermedi-

aries. At the end of an exchange phase, we assume that each

process holds all outbound messages intended either for it or

for one of the exterior processes for which it is an intermediary.

In this document we consider two types of exchanges: local
and remote.

A local exchange consists of all of the processes on a

compute node. A local exchange phase consists of each

participating process’s forwarding each message it holds to

its destination or intermediary if its destination is remote.

A remote exchange consists of a set of processes, each of

which lives on a different compute node. A remote exchange

is similar to a local exchange, wherein participants forward

each held message to its destinations or intermediary if the

destination is a different process on the same node.

These local exchanges could be implemented a few different

ways. For example, as they are a partitioning of the global

processor set, they could be implemented with ALLTOALLV

calls while potentially still gaining some improvements from

asynchronicity. We instead implement them as a round of

SEND and RECV calls, so that processes can begin working

before all of their exchange partners are available. On systems

with optimized ALLTOALL implementations, such as IBM

BG/Q Sequoia at LLNL, we have seen better bandwidth

utilization and performance by implementing these exchanges

using ALLTOALLV.

B. Node Local

The node local strategy consists of a local exchange on

each node, followed by C remote exchanges involving all

processes with the same core offset. At the beginning of the

local exchange, the process on core (n, c) holds a set of

messages to be transmitted. Each message with destination

(n′, c′) is forwarded to (n, c′) in a local exchange. At the end

of this local exchange, each core (n, c) holds messages with

addresses of the form (n′, c). At the end of this exchange, each

message is held by a process matching the destination’s core

offset. Fig. 1 depicts a representation of such a local exchange.

Fig. 1: Example of the 4-core local exchange topology for

node local, node remote, and NLNR protocols.

Once a process on (n, c) completes its local communication

phase, it enters the program context for a remote exchange.

This remote exchange consists of all of the cores with local

offset c. Following the local exchange, all messages reside

on a process with the correct core offset. Once a process is

finished participating in this remote exchange, it has sent all

messages routed through it and received all messages sent to

it during this round of collective communication. It can safely

move on to a different program context, even if others are still

working. Fig. 2 depicts a representation of one of these remote

exchanges.

Fig. 2: Example of 4-core, 4-node local exchange topology of

core offset 1 for node local and node remote protocols.

In total, the node local protocol consists of N local ex-

changes and C remote exchanges, which occur in parallel and

223

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

may overlap. All messages destined for a particular remote

process are accumulated at a single intermediary at each node

prior to remote transmission, which potentially allows many

small message to be packaged into larger messages, saving on

remote overhead.

C. Node Remote

The node remote protocol is very similar to the node local

protocol, except its execution happens in reverse. That is,

each process participates in a remote exchange with all cores

matching its core offset in the first round of communication,

followed by a local exchange at each node in the second. For

each message held by the process at (n, c) with destination

(n′, c′), the process forwards the message to (n′, c) in this

remote exchange. Once all remote exchanges have completed,

each message is held on a node matching its destination node

offset. A local exchange in the second phase ensures that each

message arrives at its destination core.

Fig. 2 and Fig. 1 depict examples of these exchanges in

the order prescribed by the node remote protocol, which as

stated are the same as the node local protocol, but in reverse.

Whereas the node local protocol accumulates all messages to

a particular process in a single intermediary before remote

transmission, the node remote protocol instead forwards all

messages from a particular process destined for the same node,

allowing for a similar bundling of messages. If the distribution

over sender-receiver pairs is roughly uniform in an application,

then the two protocols should exhibit roughly equivalent

performance. Consider, however, the case of broadcasts. If a

process has a message it must send to every other process in

the group, then the node local and node remote protocols treat

it differently. In the node local protocol, the message must

be copied and sent to every on-node core offset before it is

then sent over all C remote exchanges to C ∗ (N − 1) remote

recipients. In the node remote protocol, it is sent to N − 1
remote recipients in a single remote exchange, each of whom

then forward it locally during the local exchange phase. So, the

node remote protocol can more efficiently handle broadcasts

as each one consumes a factor of C fewer remote messages,

pushing more of the broadcasting work onto the (typically)

faster shared memory. We will see this in greater detail later.

D. Node Local Node Remote (NLNR)

We have detailed two protocols thus far, each of which

depend upon C independent communication channels, each

including N participating cores. As we have discussed, differ-

ent applications might prefer either the node local and node

remote protocols. However, is it possible to retain qualities of

both? The final protocol we discuss in this document we dub

node local node remote (NLNR), which does exactly this. The

NLNR protocol reduces the number of remote communication

channels to the theoretical minimum, while still allowing

each node to communicate directly with every other node

by eliminating redundancy. A message originating at node n1

might be transmitted along any of C different remote channels

to node n2 using node local or node remote. In NLNR, there

is only one channel connecting each such pair of nodes.
In order to facilitate this reduction in channels, the protocol

need occur in three stages: an initial local exchange, a remote

exchange, and a final local exchange. It is helpful to visualize

the topology of the remote exchange to explain the whole

process as the first and second local exchanges serve to

coalesce and then distribute messages, respectively. Informally,

we structure groups of nodes into “layers” with the same

topology as the cores on an individual node. All messages

destined for a node with a given offset within its layer then

get routed through the core with the same offset within its

node. Similarly, a core with a given offset within a node is

responsible for receiving messages from all nodes with that

same offset within their layers.
More formally, in addition to their node offset n ∈ [N], we

assign to each node a layer offset � = n mod C. Further, we

enforce the rule that (n, c) ∈ [N] × [C] is an intermediary

for all cores on node n′, where c = n′ mod C with corre-

sponding intermediaries (n′, c′) where c′ = n mod C. Fig. 3

depicts such a topology for a single layer, whose connections

form a clique. Note that cores with addresses of the form (n, c)
where c = n mod C do not participate in any communication

within a layer. These cores only communicate with their

corresponding cores in nodes whose layer offsets match their

own. Fig. 4 depicts an example inter-layer communication

topology for two layers. Intra-layer edges are suppressed for

clarity. The edges in Fig. 4 mirror those of Fig. 3 aside from

the addition of the self-offset edges missing from Fig. 3. Note

that by adding the edges from Fig. 3 to both layers, we have

a clique.

Fig. 3: Example of the remote communication topology within

a single layer of 4-core machines in the NLNR protocol.

In the first local exchange on node n, a message from (n, c)
with destination (n′, c′) is forwarded to (n, n′ mod C). In the

remote exchange, this message is sent to (n′, n mod C). In

the final local exchange, the message arrives at (n′, c′). If any

of these intermediate cores are the destination, it is received

there and not forwarded.
If a process needs to broadcast to all other processes, then it

sends this message to each of its local neighbors, who forward

it along to each of their remote partners, who in turn distribute

224

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Example of the remote communication topology be-

tween two layers of 4-core machines in the NLNR protocol.

it on each remote node. Like the node remote protocol, a

broadcast over NLNR results in N − 1 remote messages.

While point to point messages are transmitted at most twice

in node local and node remote, they might be transmitted

up to three times in NLNR. While the local shared memory

transmissions are less costly than remote transmissions over a

wire, they are still not trivial, so this can result in overhead

not seen in the other two protocols. However, in exchange we

significantly reduce the number of channels over which remote

messages traverse. Recall that node local and node remote each

require C communication channels, each of which includes the

N cores with matching core offset c for each c ∈ [C]. NLNR,

however, requires
(
C
2

)
+C channels, each including 2N

C cores

(aside from the self-offset channels, which include N
C cores

each). Such a channel consists of all the address pairs (n, c),
(n′, c′) where c = �′ = n′ mod C and c′ = � = n mod C
for some (�, �′) ∈ [C]2.

On average, each core must communicate with N
C nodes.

Therefore, this configuration is able to minimize the maximum

number of nodes any individual core must communicate with.

E. Bandwidth Maximization

Consider a configuration consisting of N nodes with C
cores each. We assume N is at least 2 to guarantee remote

communications must occur in the routing schemes described

in Sections III-B, III-C, and III-D. For the ease of analysis,

we will assume message traffic is uniform across all pairs of

cores.

First, consider a mailbox with no routing scheme, that is,

all cores send messages directly to the destination core. A

core in this mailbox will be involved in (N − 1)C remote

communications. If this core sends a total message volume of

V bytes, the average message size sent to each recipient is
V

(N−1)C = O (
V
NC

)
.

For our routing schemes, we can perform a similar analysis.

Each core in the Node Local and Node Remote routing

schemes communicates remotely with N − 1 remote cores,

giving an average message size of V
N−1 = O (

V
N

)
. Each core

in NLNR routing communicates remotely with N
C remote cores

because of the organization of nodes into layers, giving an

average message size of O (
V C
N

)
.

The difference in average message sizes between routing

schemes can have a large impact on mailbox performance on

a real network. Fig. 5 shows the network bandwidth for various

message sizes in which a single process sends a message

to one other process. The available bandwidth increases as

message sizes increase with a downward jump as MPI switches

from using an eager protocol to a rendezvous protocol at a

size of 16KB. For a fixed message volume, we have labeled

possible bandwidth values for the above routing schemes using

the scaling of average message sizes discussed, assuming a

configuration that features 32 cores per node. NLNR being

farther to the right on this plot allows it to scale to larger

numbers of nodes without increasing the size of mailbox used.

Fig. 5: Network bandwidth between two ranks for various

message sizes using MVAPICH 2.3 over the Omni-Path in-

terconnect on Quartz at LLNL.

We do not see an asymptotic improvement in the average

message size as the number of nodes increases. For all

routing schemes, a doubling of the number of nodes results

in a halving of the average message size. The constant that

gets introduced, however, is C. While this value is constant

for a given system, the number of cores per node on new

systems has been increasing over time. As the number of cores

available increases, the lateral distance between no routing,

Node Remote, and NLNR increases, making effective routing

even more useful for large numbers of nodes.

IV. DESIGN FEATURES

YGM is designed to provide users with a simple interface

for handling communication on distributed systems in general

algorithms that may feature data-dependent computations with

computation and communication imbalances across cores.

Mailboxes are created by designating the behavior upon re-

ceiving a message and the message capacity of a mailbox.

When a message needs to be sent, a call to either SEND or

SEND BCAST is made, depending on whether the commu-

nication is point-to-point or a broadcast operation. Message

receiving is asynchronously handled by specifying a callback

to YGM, and the receiving core does not need to be aware

when it is going to receive a message.

225

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

A. Message Coalescing

When sending many small messages, metadata associated

to messages can use a significant portion of the network’s

bandwidth. Message coalescing is a common technique to re-

duce this bandwidth requirement by bundling several messages

together.

The differences in our routing schemes can be thought of

as taking advantage of different levels of message coalescing.

When messages are sent directly to the destination core, all

messages must be coalesced at the core-core level. For Node

Local and Node Remote routing, the local exchange allows

messages from a single node to a single remote core or a

single core to a single remote node can be coalesced. Using

NLNR routing, all coalescing available in Node Local and

Node Remote routing are available, allowing messages to be

coalesced on the node-node level.

B. Termination Detection

Termination detection is handled by tracking when all ranks

have completed sending and receiving messages. An algo-

rithm simply calls TEST EMPTY or WAIT EMPTY indicating

to YGM that the algorithm has completed producing new

messages and YGM flushes its pending send buffers, including

empty buffers. When empty message buffers are sent by

all ranks globally, YGM can terminate. For algorithms that

maintain work queues external to YGM, such as LLNL’s graph

analytics framework HavoqGT, it is necessary to poll YGM

completion via TEST EMPTY. For simplicity, the algorithms

described in this paper use WAIT EMPTY for termination

detection.

C. Variable-Length Messages

In many applications, it may be necessary to send messages

of different lengths. YGM supports variable-length messages

through the use of cereal, a C++ serialization library [13]. Se-

rialization provides a way of packing and unpacking messages

on the source and destination cores. Support for C++ standard

template library containers is provided by cereal, making it

unnecessary for users to implement their own serialization

functions in most cases.

V. EXPERIMENTS

Our experiments were run using LLNL’s Quartz cluster.

Each compute node features 36 cores (2x Intel Xeon E5-

2695 v4 @ 2.1GHz) and 128GB DRAM. To test the char-

acteristics of the mailbox under different routing schemes,

simple applications were developed that feature large amounts

of communication relative to computation.

A. Degree Counting

The first application streams through the edges of a graph

to calculate the degree of each vertex. Each vertex is assigned

to a particular core for counting, so all edges spawn exactly

two messages, each of which corresponds to a single addition.

Edges are generated and counted in batches to isolate the

Algorithm 1 Degree Counting

1: function DEGREECOUNTING(G)

2: num ranks← Y GM.num ranks
3: degrees← Zeros(G.num vertices/num ranks)
4: function RECVFUNC(v) � Callback Function

5: local ID ← v/num ranks
6: degrees[local ID]← degrees[local ID] + 1

7: mb← Y GM mailbox(RecvFunc)
8: for (u, v) ∈ G do
9: u owner ← u%num ranks

10: v owner ← v%num ranks
11: mb.Send(u owner, u)
12: mb.Send(v owner, v)

13: mb.wait empty()

time of degree counting from that of edge generation. The

psuedocode for degree counting is outlined in Algorithm 1.

In this example, we have assigned vertices to ranks for

counting in a round-robin fashion. For simple uses of YGM

such as this, we must define the mailbox’s behavior upon

receiving a message (lines 4-6), construct the mailbox with this

receive callback function (line 7), send messages through the

mailbox by providing a destination and message to send (lines

11-12), and then wait for all communications to complete

by calling mb.wait empty() (line 13). During our loop over

G, the mailbox is queueing messages and performing its

exchanges each time it reaches capacity. If G is not partitioned

evenly across all processors, some processors will exit the

loop early. These processors may still be receiving messages

and may be necessary as intermediaries during routing, so the

call to mb.wait empty() keeps them in their communication

context until all processors are done sending messages.

B. Connected Components

The second application finds connected components within

a graph. To do so, each vertex stores a label that is initialized

to its own global ID. For every edge in the graph, a vertex

sends its current label to its neighbor. When receiving a label

from a neighbor, a vertex stores the minimum of its label and

the neighbor’s label. This algorithm continues passing over the

entire graph until no labels change.

This algorithm terminates with all vertices storing the

minimum vertex ID in its connected component. For a graph

G = (V,E), this algorithm can take O(diam(G)) passes over

the graph to complete, where diam(G) is the diameter of G.

A pass generates O(|E|) messages, each of which corresponds

to O(1) work. By using the Shiloach-Vishkin connected

components algorithm, we could find connected components

using O(log(|V |)) passes over the graph [14]; however, our

implementation was developed to be simple benchmark test of

scalability for our mailbox, not the most performant connected

components algorithm. A Shiloach-Vishkin implementation

could be implemented using YGM.
1) Use of Asynchronous Broadcasts: To test YGM in our

connected components algorithm, we generate graphs using

226

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

an RMAT generator [15]. RMAT graphs are characterized by

degree distributions that approximately follow a power-law

distribution [16]. The presence of high-degree vertices can

lead to computation and communication imbalances among

processors. One way of handling these vertices is through a

2D decomposition of the adjacency matrix [17]. After this

decomposition, matrix blocks can become hypersparse, that

is, have fewer edges than vertices [18].

Instead, we use delegates to handle the high-degree vertices

[2]. With this method, we identify what we consider to

be high-degree vertices as delegates. All non-delegates are

assigned to cores using a 1D partitioning. Delegate vertices are

distributed across all cores with colocated edges, i.e., the core

responsible for storing a delegate edge is the core assigned to

the vertex on the other end of the edge.

When running the connected components algorithm, dele-

gate labels are stored at all cores. After each pass over the

graph’s edges, the delegate labels are synchronized across all

cores. This synchronization can be implemented using the

asynchronous broadcasts provided by YGM.

C. Sparse Mat-Vec

The final application we built to demonstrate YGM is a

sparse mat-vec (SpMV) that computes the product of a sparse

matrix with that of a dense vector, that is, we compute

y = Ax

given some sparse matrix A and dense vector x. Our im-

plementation stores A in a compressed sparse column (CSC)

format and uses delegates with a 1D partitioning of columns

across processor cores.

Let A ∈ R
n×n and x, y ∈ R

n. For an index k corresponding

to a non-delegated column in A, let p(k) return the ID

of the processor responsible for storing column k. x and

y are both partitioned so p(i) stores xi and is responsible

for accumulating values into yi. If the i-th column of A is

delegated, then every core gets a local copy of xi and yi.
Consider a nonzero entry aij in A for which the i-th and

j-th columns are not delegated. In the course of the SpMV

operation, p(j) performs the multiplication aijxj and sends the

result to p(i) for accumulating into the resulting yi. Thus each

non-delegated edge yields a single multiplication, addition, and

message.

In the case that the j-th column is delegated, p(i) stores the

nonzero aij . Because the j-th column is delegated, p(i) also

contains a copy of xj and is able to perform the multiplication

and addition without sending a message. In the case that the i-
th column is delegated, p(j) keeps a local copy of yi to which

it adds aijxj , again avoiding a communication. At the end of

the computation, all delegated entries in y are combined using

an ALLREDUCE operation.

To illustrate how SpMV is implemented with YGM in a

simple 1D partitioning, pseudocode is shown in Algorithm 2.

This pseudocode does not explicitly depend on the distribution

of columns across processors. It only assumes x and y are

distributed in the same manner as the columns of A.

Algorithm 2 SpMV

1: function SPMV(A, x)

� A stored in distributed CSC format

� x distributed same as columns of A
2: y ← Zeros(x.length)
3: function RECVFUNC(index, value) � Callback

4: y[index]← y[index] + value

5: mb← Y GM mailbox(RecvFunc)
6: for col ∈ A.cols do
7: col ind← col.ID
8: for (row ind, val) ∈ col.nonzeros do
9: prod← x[col ind] ∗ val

10: dest← Owner(row ind)
11: mb.Send(dest, row ind, prod)

12: mb.wait empty()
13: return y

VI. RESULTS AND DISCUSSION

Here we present the results of running the applications

described in Section V. For these experiments we compare

the performance of the Node Local, Node Remote, and NLNR

routing schemes presented in Section III. We also include a

routing scheme in which all messages are sent directly to

their destinations as a baseline for comparison. This scheme

is labeled as “NoRoute”.

In these tests, NLNR routing was not used for less than

32 compute nodes. At 32 compute nodes, our test system

which features 36 cores per node is able to almost completely

build a notional layer in NLNR. Up until this point, all remote

communications are routed through a small subset of cores.

In this situation, Node Remote is a more appropriate choice

of routing scheme.

A. Degree Counting

To test the use of degree counting, Erdős-Rényi graphs

were generated with edge endpoints uniformly sampled. These

graphs were chosen to highlight performance when commu-

nication and computation are relatively balanced across all

cores. Edges were produced and counted in batches to isolate

the time of degree counting from that of edge generation.

Figure 6 shows the scaling properties of our degree-counting

application using the routing schemes in YGM.

We see that the NoRoute mailbox scales very poorly past

4 compute nodes. Even with coalescing, a mailbox without

additional routing makes poor use of network bandwidth. Each

core must split its messages to be sent to all other P − 1
cores on the system. This provides limited opportunities for

coalescing to occur.

Node Local and Node Remote routing demonstrate good

strong and weak scaling up to 128 compute nodes. Past a

certain point, these mailboxes face a similar scalability issue

to that of the No Routing mailbox. Consider a single core in a

system. If an additional compute node is added, that core has

one additional core it must communicate with in its remote

227

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 6: Scaling of degree counting application using YGM. Weak scaling (a) performed using 228 vertices per node and 232

edges per node. Strong scaling (b) performed using 232 vertices and 237 edges. All edges are sampled uniformly. Mailboxes

are constructed with a fixed mailbox buffer size of 218 for all numbers of nodes.

channel. Keeping the mailbox size fixed, we eventually reach

a point where coalescing loses its effectiveness as we add

additional compute nodes.

It is worth noting that in degree counting with uniformly

sampled edges, every pair of cores is expected to send the

same number of messages as all other pairs of cores. This

makes broadcasts and delegate vertices unnecessary to keep

computation and communication balanced across cores. Under

these circumstances without broadcasts, we expect to see Node

Local and Node Remote routing performing very similarly,

which agrees with our results.

NLNR routing demonstrates excellent scalability out to

1024 compute nodes. For a system with C cores per compute

node, an additional C compute nodes must be added to the

system before each existing core sees an increase in the size

of remote communication channels due to the organization

of nodes into layers. Thus, the effectiveness of coalescing is

maintained much longer for NLNR routing than the previous

routing schemes.

In Fig. 6, we see that for moderate numbers of compute

nodes where Node Local, Node Remote, and NLNR routing

are scaling well, Node Local and Node Remote routing provide

better absolute performance than NLNR. This difference in

performance shows the effect of the additional local exchange

phase in NLNR routing.

B. Connected Components

To test our simple Connected Component algorithm, we

generated RMAT [15] graphs following the Graph500 [4]

methodology for both weak and strong scaling experiments.

These graphs were chosen because their skewed degree distri-

butions provide computation and communication imbalances,

and allow us to incorporate broadcasts to synchronize delegate

vertices. Fig 7 shows the scaling properties of the connected

components application. We again see poor scaling without

routing. Node Local and Node Remote tend to outperm NLNR

for fewer than 128 compute nodes. Beyond that point, NLNR

tends to exhibit better scaling, with the notable exception of

at 1024 nodes in the weak scaling study.

It is important to note the number of broadcasts in weak

scaling is not fixed. As the size of the graph increases, the

number of vertices with a degree higher than a given threshold

will increase as well. The increase in the number of delegates

will cause a larger number of broadcasts during delegate

synchronization.

In order to offset the growth in the number of delegates,

we scaled the delegate threshold with the same scaling as the

expected largest degree in the RMAT graphs. This helped to

offset the number of broadcasts, but as seen in Fig. 7a, there

is still an appreciable increase as graph sizes increase.

The connected components implementation was designed to

demonstrate the performance under heavy broadcast usage. As

such, delegate thresholds were chosen to give a larger number

of delegates than would typically be desired.

C. Sparse Mat-Vec

Figure 8 gives the scaling results for the SpMV application.

Figures 8a and 8c show NLNR providing the best scaling

among the included routing schemes.

For comparison, we included results of SpMV operations

using CombBLAS [19]. CombBLAS provides a distributed

graph library using linear algebra primitives. CombBLAS uses

a 2D partitioning for matrices stored using compressed sparse

column (CSC) or doubly compressed sparse column (DCSC)

formats [18], [20]. It is important to note that the operation

we are performing is a sparse matrix-dense vector product.

One of CombBLAS’s strengths comes from its efficient imple-

mentation of sparse matrix-sparse vector products [21] which

has widespread use in expressing graph algorithms. Our goal

with these comparisons is not necessarily to beat CombBLAS

performance. CombBLAS is much more sophisticated than our

simple SpMV application using YGM and delegates.

Figure 8a shows YGM and CombBLAS SpMV’s applied to

RMAT graphs (scale 24-32), with the YGM implementation

228

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 7: Scaling of connected components application using YGM. Weak scaling (a) performed using 226 vertices per node

and 230 edges per node. Growth in the number of broadcast operations is also shown for weak scaling. Strong scaling (b)

performed using 230 vertices and 234 edges. Edges generated using RMAT-Graph500 generator. Mailboxes are constructed

with a fixed mailbox size of 218 for all numbers of nodes.

(a)

Delegate growth in RMAT weak scaling

Nodes Number of Delegates

1 101544

2 114849

4 130134

8 154179

16 189445

32 237969

64 303046

128 378275

256 503537

512 653775

1024 848405

(b)

(c) (d)

Fig. 8: Scaling of sparse mat-vec using YGM and CombBLAS. Weak scaling experiments in (a) used RMAT graphs (parameters

0.57, 0.19, 0.19, 0.05) with 224 vertices per compute node and an edge factor of 16. Growth in the number of delegates used

in YGM of RMAT weak scaling experiments shown in (b). Weak scaling experiments in (c) used uniformly generated edges

(RMAT with parameters 0.25, 0.25, 0.25, 0.25) with 224 vertices per compute node and an edge factor of 16. Strong scaling

results for YGM SpMV implementation using WebDataCommons 2012 webgraph (d). YGM mailbox sizes for weak scaling

experiments were 218. WebDataCommons strong scaling used a mailbox size of 210 ×N where N is the number of compute

nodes.

229

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

making use of delegates to partition high-degree vertices.

CombBLAS outperforms YGM’s SpMV for relatively small

numbers of compute nodes. Scaling past about 64 compute

nodes, we see YGM begins to perform better than Comb-

BLAS, with NLNR routing providing the best results for very

large number of compute nodes.
While the YGM performance appears promising using

RMAT graphs, it is not immediately clear whether this perfor-

mance is due to the use of YGM as a communication layer or

the use of delegate vertices to handle the scale-free nature

of the graphs. Figure 8c shows the same test run without

using delegates in the YGM implementation and using a graph

generated by setting the parameters for the RMAT generator

to 0.25, 0.25, 0.25, and 0.25. This will give a graph similar

to an Erdős-Rényi graph with uniformly sampled edges. In

this case, we see a larger gap between CombBLAS and YGM

performance at small numbers of nodes. We do however see

the same scaling behavior for the SpMV implementations,

allowing YGM to outperform once again for large numbers

of nodes without the use of delegates.
Figure 8d shows strong scaling results for the YGM SpMV

on the WDC 2012 Webgraph, a large, real-world, scale-free

graph [22] featuring 3.5 billion vertices and 128 billion edges.

For this experiment, mailbox sizes had to be scaled along with

the number of compute nodes. Without increasing the mailbox

size, message sizes decreased to the point of preventing scaling

of the SpMV. With this modification, we see very similar

performance and scaling between YGM and CombBLAS.

VII. ONGOING & FUTURE WORK

We are currently investigating techniques to build a hy-

brid MPI+threads version of YGM. Our current MPI-only

implementations require multiple on-node memory copies

during each routing step; a hybrid MPI+threads approach

can eliminate multiple on-node memory copies. Performance

evaluations of a hybrid YGM will be included in future

versions of this report. For future work, we are considering

building GraphBLAS [23] on top of YGM.

VIII. CONCLUSION

In this work, we have presented YGM, a pseudo-

asynchronous communication layer that makes use of effective

routing through local and remote exchanges to provide scal-

ability to large numbers of nodes. YGM has been in use for

graph processing applications at LLNL through its inclusion

in HavoqGT. Here we presented several simple applications of

YGM to demonstrate its scalability. While YGM is effective

for graph algorithms, it is more broadly applicable to data-

dependent problems that may feature imbalances in compua-

tion and communication across cores.

IX. ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National Lab-

oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-

770057). Experiments were performed at the Livermore Com-

puting facility.

REFERENCES

[1] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry,
“Challenges in parallel graph processing,” Parallel Process.
Lett., vol. 17, no. 01, pp. 5–20, 2007. [Online]. Available:
https://doi.org/10.1142/S0129626407002843

[2] R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel
traversal of scale free graphs at extreme scale with vertex
delegates,” in Supercomputing, 2014, pp. 549–559. [Online]. Available:
https://doi.org/10.1109/SC.2014.50

[3] “Havoqgt.” [Online]. Available: https://github.com/LLNL/havoqgt
[4] J. Ang, B. Barrett, K. Wheeler, and R. Murphy, “Introducing the graph

500,” Cray User’s Group (CUG), 2010.
[5] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine,

“Active pebbles: Parallel programming for data-driven applications,” in
Proceedings of the International Conference on Supercomputing (ICS
’11). New York, NY, USA: ACM, 2011, pp. 235–244. [Online].
Available: http://doi.acm.org/10.1145/1995896.1995934

[6] J. J. Willcock, T. Hoefler, N. Edmonds, and A. Lumsdaine, “Am++: A
generalized active message framework,” in Par. Arch. and Comp. Tech.,
Sep. 2010, pp. 401–410.

[7] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and
K. Yelick, “Parallel de brujin graph construction and traversal for de
novo genome assembly,” in Supercomputing, 2014, pp. 437–448.

[8] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr, C. Aluru, R. Egan,
L. Oliker, D. Rokhsar, and K. Yelick, “Hipmer: an extreme-scale de
novo genome assembler,” in SC ’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, Nov 2015, pp. 1–11.

[9] J. Chapman, I. Ho, S. Sunkara, S. Luo, G. Schroth, and D. S. Rokhsar,
“Meraculous: De novo genome assembly with short paired-end reads,”
PLoS ONE, vol. 6, no. 8, p. e23501, 2011.

[10] A. Bienz, W. D. Gropp, and L. N. Olson, “Node Aware Sparse Matrix-
Vector Multiplication,” p. arXiv:1612.08060, Dec 2016.

[11] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway,
J. E. Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization of
mpi collective communication on BlueGene/L systems,” in Proceedings
of the 19th Annual International Conference on Supercomputing (ICS
’05). New York, NY, USA: ACM, 2005, pp. 253–262. [Online].
Available: http://doi.acm.org/10.1145/1088149.1088183

[12] “MPI Ialltoallv.” [Online]. Available:
https://www.mpich.org/static/docs/v3.2/www3/MPI Ialltoallv.html

[13] W. S. Grant and R. Voorhies, “cereal - a c++11 library for serialization,”
2017. [Online]. Available: http://uscilab.github.io/cereal/

[14] Y. Shiloach and U. Vishkin, “An o(logn) parallel connectivity algorithm,”
J. Algorithms, vol. 3, no. 1, pp. 57 – 67, 1982. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0196677482900086

[15] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” Proceedings of the SIAM Conference on Data Mining
(SDM), vol. 6, 2004.

[16] C. Seshadhri, A. Pinar, and T. G. Kolda, “An in-depth analysis of
stochastic kronecker graphs,” Journal of the ACM, vol. 60, 02 2011.

[17] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Supercomputing, 2011, pp. 65:1–65:12. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063471

[18] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), 2008, pp. 1–11.

[19] A. Buluç and J. R. Gilbert, “The combinatorial BLAS: design,
implementation, and applications,” The International Journal of High
Performance Computing Applications, vol. 25, no. 4, pp. 496–509,
2011. [Online]. Available: https://doi.org/10.1177/1094342011403516

[20] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in IN SPAA, 2009, pp. 233–244.

[21] A. Azad and A. Buluç, “A work-efficient parallel sparse matrix-sparse
vector multiplication algorithm,” 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 688–697, 2017.

[22] “Web data commons webgraph,” 2012. [Online]. Available:
http://webdatacommons.org/hyperlinkgraph/

[23] A. Buluc, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the GraphBLAS API for C,” in Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2017, pp. 643–652.

230

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:39:52 UTC from IEEE Xplore. Restrictions apply.

