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Abstract—A graph is an excellent way of representing relation-
ships among entities. We can use graph analytics to synthesize
and analyze such relational data, and extract relevant features
that are useful for various tasks such as machine learning.
Considering the crucial role of graph analytics in various
domains, it is important and timely to investigate the right
hardware configurations that can achieve optimal performance
for graph workloads on future high-performance computing
systems. Design space exploration studies facilitate the selection
of appropriate configurations (e.g. memory) to achieve a desired
system performance. Recently, the approach of accelerating
graph analytics using persistent non-volatile memory has gained
a lot of attention. Traditional system simulators such as Gem5
and NVMain can be used to explore the design space of these
advanced memory architectures for graph workloads. However,
these simulators are slow in execution thus limiting the efficiency
of design space exploration studies. To overcome this challenge,
we proposed a machine learning based approach to co-design
advanced memory architectures for graph workloads. We tested
our approach with DRAM, non-volatile memory, and hybrid
memory (DRAM+NVM) using a breadth first search bench-
mark algorithm. Our results showed the applicability of the
proposed machine learning based approach to the co-design of
the advanced memory architectures. In this paper, we provide
recommendations on selecting advanced memory architectures
to achieve desired performance for graph workloads. We also
discuss the performances of different machine learning models
that were considered in this study.

Index Terms—Design Space Exploration; Graph Analytics;
Non Volatile Memory; Machine Learning;

I. INTRODUCTION

In this paper we present a co-design methodology for

computer micro-architectures for the optimum performance

of graph analytics workloads. Our methodology is based on

Machine Learning (ML) and is applied for the design of

computer memory architectures to optimize the performance

of graph analytics workloads. However, our methodology

can be used for applications other than graph analytics. For
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computer architecture design, it is necessary to choose appro-

priate configurations to satisfy various performance, power,

temperature, reliability, and other metrics. This process is

known as the Design Space Exploration (DSE). The size of

the micro-architecture design space has been growing at a

rapid pace due to the increasing complexity of the modern

computer systems and the complex interactions among var-

ious hardware components, software stack, and application

softwares. Traditionally, computer architects utilize large-scale

cycle-accurate architectural simulators that are used on rep-

resentative benchmarks to explore the design space. Some

examples of such architectural simulators used by computer

vendors include the Mambo simulation environment [1], the

SimNow simulator [2], and the HAsim simulator [3]. How-

ever, the speed of these traditional architectural simulators

is extremely slow. To improve the simulator’s speed and

fidelity, several enhanced simulators have been developed [4].

Nevertheless, even the enhanced simulators cannot meet the

demands of simulating and optimizing the performance of

extreme scale computing systems. Various approaches have

been proposed to overcome these limitations, including several

ones based on machine learning for more efficient design space

exploration. We utilized machine learning methods for micro-

architectural design to build a predictive model by utilizing

a small set of simulated configurations in the training phase.

Such predictive models in essence approximate the simulator

function that characterizes the relationship between the design

parameters and processor responses. Some example design

parameters for memory architectures are cache size and queue

size. Example processor response parameters are performance

and energy consumption. Then, in the predicting phase, the

trained models are used to predict the responses of new

design configurations that are not involved in the training

set. Since simulations are only required in the training phase,

the machine learning techniques are relatively efficient than

other traditional approaches when they can accurately predict

the micro-architectural performance while employing a small

labeled training set.

We developed an end-to-end workflow for the co-design

of computer memory architectures and graph analytics work-

loads. Our workflow combines traditional simulators such as

the Gem5 [5] and the NVMain simulators [6] with ML to

make recommendations for optimized hardware configurations
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for graph analytics workloads. In Section II we present some

technical background and related work. Section III describes

our end-to-end workflow. Section IV presents detailed results

and discussion of our experimental results. We conclude by

discussing our planned future research.

II. BACKGROUND AND RELATED WORK

The purpose of this research is to develop an end-to-

end workflow for optimum performance of graph analytics

applications to be executed on computing platforms with

hierarchical memory structures. Historically, the main memory

component of computer architectures has been the ubiquitous

Dynamic Random-Access Memory (DRAM). DRAMs are

present in mobile hand-held devices as well as in the most

powerful supercomputers. However, conventional computer

memory technologies will not be able to meet the challenges of

future extreme-scale systems. These challenges include energy

efficiency, system reliability, and application performance.

There is an increasing gap between the frequencies of CPUs

and the latencies of memory systems. This gap, known as

the memory wall [7], results in performance bottleneck.

Additionally, DRAM device scaling has also plateaued to

result in lower on-node memory capacity. The limited on-

node memory capacity forces the applications to engage in

increased inter-node communications resulting in degradation

of application performance and system reliability. In addition,

the current memory systems are not energy efficient due to the

fact that they consume power even in idle mode. Traditional

DRAM main memory systems consume as much as 30-50%,

of the total power budget of a computing system [8]. There-

fore, alternative memory technologies such as various non-

volatile memory concepts [9] are being investigated. NVM

devices such as the NAND flash memories are deployed on

state-of-the-art supercomputers. U.S. Department of Energy’s

Summit Supercomputer (currently ranked 2 on the TOP500

list [10]) has 1600 GB of NVM in each of its 4608 nodes and

these can be configured either as burst buffers or as extended

memory [11]. However, the optimum integration of NVMs in

a computer memory architecture is an active and open area of

research. NVMs can be integrated in multiple ways in memory

hierarchy. NVMs can be added to augment on-node DRAM, as

global storage devices, as CPU cache, or as I/O burst buffers.

Therefore, rigorous design space exploration of these emerging

memory systems is necessary such that appropriate choices

of memory parameters/configurations can be made to satisfy

performance, power, reliability, and other metrics.

The objectives of our paper are optimum hardware con-

figuration selection and design space exploration for graph

analytics applications. Researchers have investigated potential

acceleration of graph analytics using persistent/non-volatile

memory technologies (e.g., NVM SSD and byte-addressable

NVM) and proposed Metall and miniVite tools [12], [13]. The

miniVite and Metall tools showed significant performance im-

provements on NERSC Cori and OLCF Summit supercomput-

ers by employing a graph that was persistently stored instead

of regenerated [12]. The NV GRAPH data structure was pro-

posed to support in-memory graph storage and computing for

non-volatile main memory systems [14]. Experimental results

showed NV GRAPH ’s performance to be comparable to the

Compressed Sparse Row Representation (CSR) and Linked-

Node Analytics using Large Multiversioned Arrays (LLAMA)

in-memory data structures. High-performance graph analytics

performance on Intel’s Optane DC Persistent Memory (Optane

PMM) was studied in [15]. The results showed that the Optane

PMM yields competitive performance on large production

clusters by supporting a range of efficient algorithms. Dhuli-

pala proposed a semi-asymmetric graph engine called Sage

and showed that shared memory and non-volatile memory

implementations of graph algorithms can solve a wide range of

graph problems [16]. Kumar and Huang proposed SafeNVM,

which offered a reliable NVM store to support application-

specific data formats such as databases and persistent key-

value stores [17]. A parallel graph processing framework for

a hybrid memory system (DRAM + NVM) called NGraph

was proposed in [18]. The authors reported that NGraph was

48.28% faster than a lightweight graph processing framework

for shared memory called Ligra [19] and a numa-aware graph-

structured analytics platform called Polymer [20] systems.

These prior promising results certainly motivate computer sci-

entists to further explore the optimum memory configurations

(DRAM, NVM, and DRAM+NVM) for large scale graph

analytics workloads.

Traditional architectural-level simulator-based memory de-

sign approach is often inefficient due to the significant com-

putational costs. The problem further intensifies for emerging

architectures with complex interactions among hardware and

application software. To overcome these challenges, ML-

based methods have been applied to design various micro-

architectural aspects, such as the memory controller optimiza-

tion [21] and memory hierarchy [22]. The ML-based DSE

approaches can be significantly more efficient than traditional

simulator-based DSE methods.

Therefore, in this work, we propose and evaluate a ML-

based DSE approach for graph analytics workloads. We

applied ML approach to build predictive models that ap-

proximate the functionality of an architectural simulator by

providing the relationship between the memory configuration

parameters (e.g., number of channels, ranks, banks, controller

frequency, timing parameters) and memory responses (e.g.,

latency, bandwidth, power, number of read/write operations).

Our previously published work concentrated on ML-based

DSE of hybrid memory design for applications such as the

HPCG and STREAM benchmarks [23]. This paper builds

upon our previous work to design an end-to-end ML-based

DSE workflow specifically for graph analytics benchmarks

such as the Graph500 [24]. Graph analytics applications have

different memory access patterns compared to traditional HPC

simulation workloads. As such, the workflow presented in this

paper provides valuable insights for the optimization of future

extreme scale systems for graph analytics.
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III. ML-BASED MEMORY CO-DESIGN FOR GRAPH

WORKLOADS

In this section, we present our end-to-end workflow for co-

design of advanced memory architectures for graph analytics

applications. We describe various components of this workflow

and discuss their respective roles. Further, we present various

machine learning algorithms considered for this study followed

by a description of the overall experimental setup.

A. Co-design workflow for advanced memory architectures for
graph workloads

We implemented an end-to-end semi-automated memory

co-design workflow for conducting machine learning based

hybrid memory co-design exploration of graph data related

workloads. The pictorial view of our memory co-design

workflow for graph workload is shown in Figure 1. The

workflow consists of three major components: 1) Gem5 system

simulator, 2) non-volatile memory simulator called NVmain,

and 3) machine learning models.

Fig. 1: End-to-end workflow for co-design of advanced mem-

ory architectures for graph workloads using ML

• Gem5 system simulator: Our objective is to simulate the

memory responses using NVMain simulator. To achieve

this, we need memory traces of any workload executing in

a computer system. Gem5 is a computer-system simulator

which can be used to simulate a designated workload as

a sequence of discrete events [5]. These events consist of

both compute events as well as memory access events.

The Gem5 simulator outputs these events in the form

of traces (both compute and memory event traces). The

Gem5 simulator can be used in two modes: 1) System

Emulation (SE) mode which simulates the system calls

and services and 2) Full System (FS) mode in which a

complete system with all devices and operating system

can be simulated. We specify to the Gem5 simulator the

system configuration (i.e. CPUs, memory size, etc.) via

a system configuration file and provide the executable of

the application workload (e.g. a benchmark algorithm).

Subsequently, Gem5 simulates the benchmark and pro-

duces the trace file. We further extract the memory-related

traces and convert them to the NVMain compatible

format.

• NVMain simulator: NVMain is an architectural-level

simulator capable of simulating various memory perfor-

mance parameters such as energy, bandwidth, latency, etc.

with cycle-accurate operations of main memory designs

using both DRAM and emerging NVM technologies

including their hybrid designs [6]. Depending on the sim-

ulation type, i.e. DRAM, NVM, or hybrid, we specify the

configuration parameters to the NVMain simulator. These

configuration parameters broadly consist of memory ar-

chitectural parameters such as number of channels in the

memory module, number of ranks per channel, number

of memory banks, number of rows and columns in each

bank, clock frequency of the memory interconnect, and

CPU frequency. Similarly, the configuration parameters

also include timing related parameters such as column

read time (tBURST), data restoration time (tRAS), row

activation time (tRCD), pre-charge time (tRP), write to

pre-charge time (tWR), etc. Along with these configu-

ration parameters, we can also specify a few control

parameters that are related to the NVMain’s operation

such as PrintGraphs, TraceReader, PrintPreTrace, etc.

We provide the memory configuration file and memory trace

file (extracted from Gem5 trace) to NVMain to simulate the

memory performances. NVMain’s output consists of various

performance metrics such as memory bandwidth, total data

reads and writes, total power and energy, etc. The following

are the definitions of few of these metrics which we considered

in this work. Typically, the memory performance depends on

the memory configuration parameters as well as the type of

workload (in our case graph processing algorithm).

• Latency: It is the time between a processor initiating a

read (or write) request for a byte or word and receiving

(or successfully writing into the memory) the byte or

word. The lower is the latency of a memory the better is

the performance. We can extract total as well as average

values for the latency from NVMain’s output trace.

• Bandwidth: It is defined as a rate at which the data can

be read from and written into the memory. For example,

the number of bytes read (or written) per second.

• Power: This indicates the total power in Watts consumed

by the memory unit while executing the specified bench-

mark.

• Memory read and write operations: These values

represent the total number of read and write operations

performed while executing the specified workload. En-

durance of a memory is related to the write operation.

While DRAM is considered to have infinite endurance

(on the order of 1015), NVMs have finite endurance of
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the order of 108–109 [6].

Next, we combine the memory performance parameters

with the corresponding memory configuration parameters to

generate the data set for training machine learning models.

Afterwards, the pre-trained ML models can be used to predict

the memory performance for graph benchmarks for various

memory configuration parameters.

B. Machine learning algorithms considered in this work

The specific objective of co-designing the advanced memory

architectures for graph workload using machine learning is to

understand the relationships between the memory configura-

tion parameters and memory performance metrics using ML

approach. We develop the surrogate ML models that can be

used for the co-design of advanced memory architectures for

graph workloads. The main limitations of using system and

memory simulators such as Gem5 and NVMain are their time

expensive nature of execution. One potential approach that

gained momentum in recent years is to develop surrogate ML

models. Once such models are available, they can be used to

quickly predict the performance of a particular memory config-

uration for a given benchmark. This approach has a potential

to accelerate the co-design process. In this work we have used

the following ML algorithms and regression techniques for the

co-design of advanced memory architectures.

• Support Vector Machines (SVM ): SVM provides a

set of supervised algorithms for classification, regression,

and outlier detection [25]. We are using SVM as a

regressor. SVM is a linear non-probabilistic binary clas-

sifier which can be applied to the non-linearly separable

data through the kernel trick and can be easily applied to

the multi-class classification problem. In principle, SVM
tries to assign each training data point to one of the two

classes so that the difference between the two classes is

maximized.

• Random Forest (RF ): The next ML algorithm consid-

ered is random forest [26]. It is based on an ensemble

learning method that creates a large number of decision

trees such that the parameters of each of these trees are

randomly perturbed. Each tree is overfitted and later the

results of all the trees are combined to obtain the final

result. We are using the RandomForestRegressor function

provided in the scikit-learn library.

• Gradient Boosting (GB): This algorithm is based on a

principle of fitting several weak learners (such as simple

decision trees) iteratively with the modified training data

in each iteration [27]. Initially, all the data points are

assigned equal weights and the learners are trained. In the

subsequent iterations, the weights of the data points that

were predicted less accurately in the previous iteration are

increased compared to the data points that were predicted

correctly. As a result, the learners are forced to learn to

predict the data points which are hard to learn. We use

the GradientBoostingRegressor function provided in the

scikit-learn library.

C. Overall setup for graph workloads

Our objective is to co-design the advanced memory archi-

tectures for graph workloads using machine learning. Here, we

describe the graph algorithm and the overall end-to-end setup

of our workflow.

The pictorial view of our co-design workflow for graph

benchmark can be seen in Figure 1. We computed the Breadth-

First Search (BFS) kernel as specified in the Graph500 bench-

mark by starting from a random vertex ID. The Graph500

is a large-scale benchmark for HPC platforms. Instead of a

computation-intensive benchmark like the High Performance

Linpack (HPL) [28], the Graph500 is focused on data-intensive

workloads [24]. We used a synthetic graph generator called

the GTGraph [29] to generate a graph with 1,024 vertices

and with an edge factor of 16. Next we ran our BFS code

on the generated data in the Gem5 simulator with the default

system configuration in a System Emulation mode (SE). This

run produced a trace file with the size of 5GB. The next task

is to extract the traces related to the memory operations and

simulate them in the NVMain simulator.

Further, we used NVMain to simulate the performance

of main memory using DRAM, NVM, and hybrid memory

configurations [6]. Each NVMain simulation for a particular

memory configuration took around 2 hours. In order to avoid

human errors, we automated the process of generating config-

uration files for 1) pure DRAM, 2) pure NVM, and 3) a hybrid

(combinations of DRAM and NVM) with different numbers of

channels as well as with different values for various memory

configuration related parameters. We specifically considered

CPU frequency, memory controller frequency, fraction of

memory, and two timing parameters, i.e. tRAS and tRCD. We

used CPU frequencies of 2 GHz, 3 GHz, 5 GHz, and 6.5 GHz.

We also used controller frequencies of 400 MHz, 666 MHz,

1250 MHz, and 1600 MHz. Using our configuration generation

scripts, we generated several configuration files for three types

of memory configurations.

Next, we created a comprehensive dataset from NVMain’s

output trace files for training ML models. We created a post-

processing script to extract the memory performance values

from the NVMain’s output trace. The memory performance

parameters we considered are latency, bandwidth, memory

reads and writes, and power. We combined these values with

their corresponding memory configuration parameters to create

a comprehensive dataset which we further used for ML model

training.

D. Challenges faced for the co-design workflow for graph
workload

We faced the following challenges in executing the proposed

workflow:

• The Graph500 benchmark like Scott Beamers Graph

Algorithm Platform (GAP) [30], did not run on the Gem5

simulator. Some of the advanced C++ runtime capabilities

are not supported in the Gem5 simulator while operating

in SE mode. We observed that some system calls such

as mprotect, set robust list, rt sigaction, rt sigprocmask,

301

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:47:39 UTC from IEEE Xplore.  Restrictions apply. 



and sched getaffinity were unavailable in Gem5, which

produced warnings and exceptions. Moreover, in the

Gem5 simulator, the graph was wrongly produced, with

537 vertices and 0 edges in place of 1,024 vertices with

10,468 edges. Furthermore, the BFS program did not run

to completion. To overcome this challenge we computed

the BFS kernel as specified in the Graph500 benchmark

by starting from a random vertex ID. We used a synthetic

graph generator called the GTGraph to generate a graph

with 1,024 vertices and with an edge factor of 16.

• Typically, a sequential approach processes the Gem5 trace

file one line at a time in a sequence. We observed that

our Gem5 trace file for a graph algorithm has over

≈ 91.5M lines. The sequential processing of this file is

a time consuming task. To overcome this challenge, we

employed a parallel script to convert the Gem5 traces

into the memory trace format compatible with NVMain.

A multiprocessing module in Python was used for parallel

computing. This parallel script divides the input file into

chunks. The size of each chunk is user specified and

the starting points of these chunks are provided to the

parallel processes. Each parallel process processes its own

chunk. Finally, each process stores its memory trace lines

sequentially in a list and this list is further stored in a

file. Our parallel script showed a linear speed-up over

the sequential approach to extracting the memory-related

traces from Gem5 output. The procedure created a 14GB-

sized output file in a required format for the NVMain

simulator.

IV. RESULTS AND DISCUSSION

In this section we present the experimental results. First,

we describe the experimental setup used for ML based co-

design for advanced memory architectures for graph workload

followed by memory performance metrics and statistics used

for the performance evaluation. Next, we discuss various

observations that can be drawn from the results where we

also provide recommendations for the co-design of advanced

memory architectures.

A. Experimental setup

1) Objectives of the experiments: The objective is to un-

derstand the relationships between the memory architectural

parameters and memory performance metrics and learn about

the suitability of ML algorithms for co-designing advanced

memory architectures for graph algorithms in three memory

modes, i.e. DRAM, NVM, and hybrid (DRAM+NVM).

2) Simulation setup: We used Gem5 system simulator in

SE mode to simulate the graph benchmark and extracted

memory traces from Gem5 output. For this work, we used

Gem5’s default configuration in SE mode which uses atomic

CPU and atomic memory access. Next, we ran the NVMain

simulator to simulate the memory traces. We used four dif-

ferent CPU frequencies 2 GHz, 3 GHz, 5 GHz, and 6.5 GHz

and four different controller frequencies 400 MHz, 666 MHz,

1250 MHz, and 1600 MHz. We considered 2 and 4 channels

to generate memory configurations for NVMain simulations.

Additionally, we used data restoration time (tRAS) and row

activation time (tRCD) as timing parameters. For DRAM, we

used tRAS value of 24 cycles and tRCD value of 9 cycles.

The tRAS for NVM was 0 as non-volatile memories do not

need to restore the data similar to DRAMs. We used several

tRCD values for NVM depending on the controller frequency.

For 400 MHz of controller frequency we used tRCD values of

20, 30, 40, 50, 60, and 80 cycles. For 666 MHz of controller

frequency we used tRCD values from 33, 50, 67, 83, 100,

and 133 cycles. For 1250 MHz of controller frequency we

used tRCD values from 62, 94, 125, 156, 187, and 250 cycles.

Lastly, for 1600 MHz of controller frequency we used tRCD
values of 80, 120, 160, 200, 240, and 320 cycles.

3) Data: In this work we computed the BFS kernel as

specified in the Graph500 benchmark by starting from a

random vertex ID. We selected this algorithm because it

is data intensive in nature and it is one the most repre-

sentative algorithms in graph analytics workloads. We used

a synthetic graph generator called GTGraph to generate a

graph with 1,024 vertices and with an edge factor of 16.

For this work, we limited our analysis to BFS algorithms

with graph of 1024 vertices. However, in future, we will

experiment with different graph algorithms and various sizes

of the input graph. We generated a comprehensive dataset for

ML model training from outputs of NVMain simulations. Out

of total 416 memory configurations, for a few configurations

NVMain simulation exited with segmentation fault error. At

this moment we don’t know the reason for this segmentation

fault. We selected around 374 data points, i.e. the memory

configurations which ran successfully, and used 80% of these

data points for training the ML models, and 20% data points

for testing. Figure 2 summarizes the dataset used for the

ML model training. The first three columns of the table

represent memory configuration parameters. For brevity we are

showing only three configurations parameters CPU frequency

CPUFreq, controller frequency (ControlFreq), and number of

channels (nCh). The columns 4–9 represent average values

of six memory performance metrics for each memory type,

i.e. DRAM (D), NVM (N), and hybrid (H). The color coding

depicts darker shades for higher values and lighter shades for

lower values of performance metrics. This representation is

helpful for comparing the performance of different memory

types having different memory configurations. We provide our

detailed observations in the subsection IV-B.

4) ML algorithms and performance metrics: We mainly

used three machine learning algorithms 1) Support Vector

Machine (SVM ) 2) Random forest (RF ), and 3) Gradient

boosting trees (GB) as regressors. In this setting, the memory

configuration parameters represent the predictor variables and

memory performance parameters represent the predicted vari-

ables. The training set is composed of these predictor variables

and their corresponding predicted variables. Further, the ML

algorithms use mean square error (MSE) as a loss function

(i.e. error function) which is a convex function. The task of

ML algorithms is to minimize this loss function. We evaluated
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Fig. 2: Summary of memory performance metrics. First three columns represent memory configuration parameters. The columns

4–9 represent average values of memory performance metrics where ‘D’, ‘N’, and ‘H’ represent DRAM, NVM, and hybrid

memories respectively. Color coding depicts darker shades for high values and lighter shades for low values.

the suitability of these algorithms in predicting the memory

performances for a given memory configuration. We used

mean squared error (MSE) (Eq. 1) and R2-score (coefficient

of determination) (Eq. 2) statistics to compare the trained ML

model’s performance on test data points. In Eq. 1 and 2, y
and ŷ represent simulated values and predicted values (by ML

models) of memory performance metrics respectively. Also,

ȳ represents the mean of the simulated memory performance

metric and n is the total number of datapoints considered for

testing. ML model is considered better if it shows a smaller

value for MSE and R2 value closer to 1.0.

MSE(y, ŷ) =
1

n
Σn

i=1(yi − ŷi)
2 (1)

R2(y, ŷ) = 1− Σn
i=1(yi − ŷi)

2

Σn
i=1(yi − ȳi)2

(2)

B. Results and observations

In this section we discuss and summarize the memory

performance metrics that are collected from the outputs of

NVMain simulations for graph workload (shown in Figure 2).

We also pinpoint various patterns in memory performances

based on CPU frequency, controller frequency, and number

of channels. Further, we compare the performance of ML

algorithms detailed in Section III-B for predicting memory

performance metrics of bandwidth, power, average latency,

total latency, memory reads, and memory writes for the

Graph500 Breadth-First Search (BFS) benchmark. Figure 3

shows six plots, each corresponding to the scatter plot of the

respective performance metric for three ML algorithms along

with the ground truth. Table I lists MSE and R2 statistics

for different ML models for predicting memory performance

metrics. Table I also highlights the best performing algorithm

for a given memory performance metric.

For a fair comparison, it is required that the values of

different performance metrics are normalized to the same

scale. For example, power takes values between [0, 1] whereas

the values of memory reads and writes are in the range of 107

(refer Figure 2). There are different normalization techniques

such as a) Z-normalization that uses mean μ and standard

deviation σ of observations and b) min-max normalization that

transforms the minimum value in observations to 0 and the

maximum value to 1. In this paper, we used a min-max scalar

technique to scale values of performance metrics in the ML

training dataset.

From the summary of memory performance metrics shown

in Figure 2 along with ML model performances shown in Fig-

ure 3 and the performance metric Table I, we gain following

insights into the advanced memory architectures.

1) Power: NVMain outputs total power for each channel.

We calculated the average power per channel for the purpose

of ML training. We reported in Figure 2 the mean values of
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(a) Power (b) Memory reads (c) Memory write

(d) Bandwidth (e) Average latency (f) Total latency

Fig. 3: Graphs comparing the performance of ML models in predicting the values of different memory performance metrics

with ground truth for various memory configurations in the test data. From left-top corner to bottom-right corner: (a) Bandwidth

(b) Memory reads (c) Memory writes (d) Power (e) Average latency, and (f) Total latency. The ground truth data was obtained

by simulating the memory configurations in the test data. The x-axis of the plots represent the indices of the test data. The

y-axis represents the corresponding memory performance metric. Overall, each graph plots the value of a specific memory

performance metric by three ML models (SVM, RF, and GB) along with the ground truth for each memory configuration in

the test data.

average power per channel for various memory configurations

described by the first three columns. Overall, we observed that

DRAM consumed more power, NVM consumed less power

and hybrid memory consumed average power for all memory

configurations. This was expected as DRAM requires power

TABLE I: ML model’s performance on graph benchmark

Memory
Parameters Statistics Linear SVM RF GB

Bandwidth MSE 5.59×10−3 3.95×10−5 3.80×10−4 1.42×10−4

R2 9.07×10−1 9.99×10−1 9.94×10−1 9.98×10−1

Memory
Reads

MSE 1.10×10−13 5.82×10−7 7.00×10−12 9.87×10−8

R2 1.00 1.00 1.00 1.00

Memory
Writes

MSE 9.14×10−12 6.75×10−7 5.94×10−10 1.03×10−7

R2 1.00 1.00 1.00 1.00

Power MSE 7.28×10−3 1.91×10−5 3.10×10−4 4.95×10−5

R2 8.69×10−1 1.00 9.94×10−1 9.99×10−1

Average
Latency

MSE 2.05×10−3 1.04×10−4 1.01×10−4 1.32×10−4

R2 9.41×10−1 9.97×10−1 9.97×10−1 9.96×10−1

Total
Latency

MSE 2.86×10−3 1.56×10−4 1.91×10−3 3.35×10−3

R2 3.86×10−1 9.66×10−1 5.90×10−1 2.80×10−1

for operations such as pre-charging and data restoration which

are absent in NVMs. DRAM showed a slightly decreased

trend of average power consumption per channel for higher

controller frequencies for a given CPU frequency while NVM

showed a reverse trend. Hybrid memory showed a mixed trend

similar to DRAM until 666MHz of controller frequency and

showed a reverse trend for 1250MHz and 1600MHz controller

frequencies. Finally, for our graph benchmark, NVMs with

controller frequency of 400 MHz showed better performance

for average power consumption per channel for a given CPU

frequency and its performance was independent of number of

channels.

In Figure 3(a), we can see that SVM and GB fit the

test data well for average power consumption per channel.

Also, we can verify from Table I that SVM ’s MSE is the

lowest with R2 = 1. RF was unable to characterize the

differences between hybrid, NVM and DRAM in slightly

higher power ranges, such as power values closer to 0.15W.

These observations lead to the conclusion that SVM is a better

choice for characterizing the average power consumption per

channel in co-designing the advanced memory architectures

for graph workloads.
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2) Memory reads/writes: NVMain typically provides mem-

ory read and write values for each channel, i.e. 2 values for 2

channeled memory and 4 four values for 4 channeled memory.

We calculated average memory read/write values per channel

and used them for ML training. We further obtained mean

values of this metric for various memory configurations and

reported in Figure 2.

We broadly observed two categories of values for average

memory reads per channel which varied by the number of

channels used in a memory configuration. Specifically, the

average memory reads per channel for a memory with two

channels was approximately double (≈4.1×107) the memory

reads with four channels (≈2×107). We saw similar observa-

tions for average memory writes per channel. For a memory

with two channels the average memory writes per channel

was (≈4.4×107) and for a memory with four channels the

value was (≈2.2×107). DRAM, NVM, and most of the hybrid

configurations memories showed this pattern evidently. Few

hybrid memory configurations with higher CPU frequencies

showed reduction in the values for average memory reads. A

hybrid configuration with 2 GHz of CPU frequency, 666 MHz

of controller frequency, and 4 channels showed ten times lower

value for both average memory reads (≈6.88×106) and writes

(≈7.47×105) per channel than the values for other configu-

rations. Other hybrid configurations with similar low values

are shown by lighter shades. Form above observations, we

can say that the hybrid memory with four channels and with

lower CPU frequency showed better performance for graph

BFS workload, specifically from the endurance perspective.

From Figures 3(b) and 3(c) and Table I we can see that

ML models SVM,RF , and GB including the baseline linear

regression, captured this average memory reads and writes per

channel well with the R2 ≈ 1 while RF’s MSE is comparable

with that of the baseline linear regression. Moreover, either

linear regression or RF can be used for predicting average

memory read/writes per channel in co-designing advanced

memory architectures. From these observations, we can say

that memory reads/writes are the characteristics of a workload.

Therefore developing ML models with the data generated from

multiple executions of a workload with varying parameters or

even different types of workloads would be beneficial for the

design space exploration study.

3) Bandwidth: NVMain provides bandwidth (MB/s) for

each memory bank. For instance, NVMain executing a mem-

ory configuration with 2 channels and 8 banks per channel

produces 16 values of bandwidth. We calculated the average

of these values to obtain average bandwidth per bank for

training ML models. Figure 2 presents mean values of average

bandwidth per bank for a memory configuration defined by

CPU frequency, controller frequency, and number of chan-

nels. Overall, we found that the average bandwidth per bank

increased with CPU frequency and controller frequency. Also

for this metric DRAM showed higher values than NVM

and hybrid memories for graph workload. Moreover, for all

memory types the average bandwidth per bank approximately

reduced to half when the number of channels doubled for given

CPU and controller frequencies.

We can observe in Figure 3(d) that both SVM and GB
algorithms predicted the testing data well whereas RF was

able to perform well only for lower bandwidth values. We

can evaluate this observation in Table I where we can see that

SVM outperformed all the other ML models with lower MSE

and R2 ≈ 1. From these observations we can say that, SVM
is a preferred algorithm for predicting average bandwidth per

bank for co-designing the advanced memory architectures for

graph workloads.

4) Memory Latency: NVMain outputs various latency val-

ues such as average latency and total latency. Average latency

indicates the number of clock cycles spent after a memory

controller initiated a memory request until its completion. This

involves operations such as row selection, column selection,

and data restoration (in case of DRAM). Total latency includes

the queuing delay along with the average latency value. We

calculated the average of these two values for ML training,

i.e. average latency per channel and average total latency per

channel.

Figure 2 provides mean values of these two metrics for var-

ious memory configurations based on the first three columns.

We found that the hybrid memory performed better over

DRAM and NVM for our graph benchmark with low values

for average latency per channel. DRAM showed high values

and NVM showed average values for the average latency

per channel. Overall, the average latency is lower for the

memory with four channels than with two channels. The

hybrid memory with CPU frequency of 2GHz, controller

frequency of 666MHz with four channels showed the lowest

value of the average latency for graph benchmark. The average

total latency per channel showed a completely reverse trend in

which DRAM showed the lowest values compared to NVM

and hybrid memories which indicates shorter queuing delay

for DRAM. Average total latency per channel was found to

be independent of CPU and controller frequency. DRAM with

four channels showed slightly lower total latency than with

two channels. Whereas, for both NVM and hybrid memory the

average total latency per channel increased with the controller

frequency.

In Figure 3(e), we can see that all the ML algorithms fits

the test data well for average latency per channel for our

graph benchmark. Specifically both SVM and RF showed

low value for MSE and with R2 ≈ 1. However, in Figure 3(f)

we can see that SVM outperformed RF and GB resulting

in lower MSE and with R2 ≈ 1 for average total latency per

channel. The R2 values for both RF and GB were also poor

for total latency (refer to Table I). From these observations,

we can say that the SVM algorithm is a better choice for

predicting average latency and total latency per channel in

co-designing the advanced memory architecture for graph

workload.

From above results and discussion, we summarize our rec-

ommendations for co-design of advanced memory architecture

for graph workload as follows:
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• We recommend NVM with a controller frequency of

400MHz for better power performance.

• We propose to use hybrid memory with four channels,

specifically the one with 2GHz CPU frequency and

666MHz controller frequency for optimal performance

for memory reads and writes.

• For better bandwidth performance, we recommend

DRAM. However, NVM and hybrid memories also

showed comparable performance.

• For optimal performance for average latency we propose

using hybrid memory and for total latency we recommend

DRAM.

• We recommend using SVM for characterizing the per-

formance metrics bandwidth, power, and latency. We

propose linear regression for characterizing memory read

and writes for co-designing the advanced memory archi-

tectures for the graph benchmark.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we developed a ML-based design space

exploration method to build predictive models for several

responses of a hybrid main-memory system. The overarching

goal of the project is to build such ML models for various

representative workloads. In our earlier work, we experimented

with STREAM and HPCG benchmarks [23]. In this work

we selected the most representative graph analytics algorithm,

i.e. Breadth-First-Search. We believe that the audience of the

paper will be interested in the specific numbers of the memory

performance metrics for BFS workload.

The work presented in this paper can be further extended in

multiple ways. In future, we plan to investigate the generaliz-

ability of this work by experimenting with other algorithms

in graph analytics, large sized Graph500 benchmarks [24],

and different hardware configurations. For this work, we used

Gem5 with default configuration in SE mode which uses

atomic CPU and atomic memory access. We will extend the

current setup for specific CPUs and cache configurations.

Specifically, our future work will address the question, how
does the graph size and the type of graph algorithms influence
the choice of good parameters for the memory architectures?

Our methodology has the potential to significantly reduce

the computational costs and time associated with simulating

memory architectures and optimizing memory performance of

graph analytics applications. In our future work, we will utilize

more advanced ML methods, such as the transfer learning

and semi-supervised learning, to move further beyond the

supervised learning domain which strongly depends on the

labeled simulated data for training and testing purposes. In

addition, we plan to utilize Active Learning (AL) techniques

to further enhance our workflow. We will apply intelligent

sampling techniques to select the initial labeled training sets

for the AL models. This is because an appropriate initial

labeled data set would allow the AL models to achieve the su-

pervised performance limits with considerably smaller number

of labeled training data, and thus would further improve the

efficiency of our DSE approach. We also plan to validate the

performance of our AL-based memory-response models with

real data.
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