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Ümit V. Çatalyürek
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Abstract—Graph and sparse matrix systems are highly tuned,
able to run complex graph analytics in fractions of seconds on
billion-edge graphs. For both developers and researchers, the
focus has been on computational kernels and not end-to-end
runtime. Despite the significant improvements that modern hard-
ware and operating systems have made towards input and output,
these can still become application bottlenecks. Unfortunately, on
high-performance shared-memory graph systems running billion-
scale graphs, reading the graph from file systems easily takes
over 2000× longer than running the computational kernel. This
slowdown causes both a disconnect for end users and a loss of
productivity for researchers and developers.

We close the gap by providing a simple to use, small,
header-only, and dependency-free C++11 library that brings I/O
improvements to graph and matrix systems. Using our library, we
improve the end-to-end performance for state-of-the-art systems
significantly—in many cases by over 40×.

I. INTRODUCTION

There is significant work developing highly optimized

sparse linear algebra and graph systems, including competi-

tions for graph kernels [1] and sparse machine learning [2],

programming models and corresponding high-performance

libraries [3]–[6], and full graph databases [7]. These all

focus on providing high-performance kernel runtimes for a

variety of datasets. In this paper, we are not providing yet

another computational graph library or a new graph program-

ming model. Instead, we address an important—yet largely

overlooked—aspect of using and developing sparse graph and

matrix systems: the input and output (I/O). Our focus is

on shared-memory multi-core servers. We show that graph

I/O is frequently the single slowest factor in the end-to-end

performance of otherwise fast computations.

In many cases implementations have stuck with sequential

I/O, presumably under a longstanding belief that parallel I/O is

not achievable without a dedicated parallel I/O system. In the

literature, graph and matrix I/O times are rarely reported and,

hence, not highly optimized. While it is the case that SATA

serializes disk access [8], implementing only sequential I/O

misses three major and common opportunities for parallelism.

First, a hardware Redundant Array of Inexpensive Disks

(RAID) controller can read from multiple drives over sepa-

rate SATA connections in parallel [9]. Second, Non-Volatile

Memory (NVM) is now widely deployed [10] and provides

parallelism through both SSDs and the NVM express (NVMe)

interface to motherboards [8]. Third, file systems include tuned

and effective caches, supporting parallel reads and writes [11].
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Fig. 1. Edge list (I:EL) and binary (I:CSR) input (I:) times and BFS runtimes
for com-Friendster, a social network graph with 65 M vertices and 3.6 B edges.
Note the differing scales between I:EL and I:CSR. Using PIGO significantly
improves end-to-end runtimes for all systems, bringing them much closer to
kernel runtimes. Galois did not finish I:EL within several thousand seconds.

In these cases, reading and writing in parallel can provide a

significant end-to-end improvement for applications.

Our goal is to remove the burden of building efficient I/O.

We target two types of users: the researcher, who is developing

a single graph kernel and does not care about the production

readiness of the code; and the developer, who is building a

graph library for production level end-user use.

Importantly we need to be useful for researchers who want

to test out a kernel idea quickly without buying into a large,

complex graph system, complete with a steep learning curve

and powerful, yet complex programming models. We do not

want researchers to have to stick with a particular graph

format, spend energy converting between them, or designing

ad-hoc binary formats with potentially subtle errors. At the

same time, we seek to provide best-in-class performance.

To achieve our goal, we provide PIGO1, a small, C++11

header-only library. PIGO takes in a filename and returns the

graph loaded into memory. Compared against optimized and

parallel graph loading in state-of-the-art libraries or simple, ad-

hoc loading, we show that using PIGO can quickly increase

both productivity and end-to-end performance. In Figure 1, we

show three leading graph libraries [3]–[5] running breadth-first

search (BFS) on a large graph. When running without PIGO,

it takes over one hundred seconds to load from an ASCII edge

list file and 0.01 seconds to run. With PIGO, the loading time

is reduced to 3.5 seconds (from an edge list) or 0.5 seconds

(from a binary compressed sparse row).

1Available at https://github.com/GT-TDAlab/PIGO.
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Fig. 2. As an I/O library, PIGO takes a desired back-end configuration from
the computation system and transforms the front-end appropriately.

II. PIGO I/O LIBRARY

A. Requirements

PIGO is built to satisfy the following requirements.

Requirement 1: Fast enough to make effective use of modern

hardware and operating systems’ parallel I/O performance.

Requirement 2: Support for common front-end and back-

end graph formats, removing the need for slow and ad-hoc

preprocessing, including weights, symmetry, and directedness.

Requirement 3: Easy and useful integration with both graph

analysis systems and one-off graph and matrix programs.

We address these requirements through our design. First,

we read in parallel and we decode bytes directly into integers,

floats, comments, or spaces. Our library was developed with

performance as a goal and written carefully as such. For

example, we limit unnecessary runtime code through template

parameters which avoids branch mispredictions.

As a library focused solely on I/O, we are able to address

Requirement 2 by ensuring we can quickly add new formats.

Front-end formats are graphs that are stored on disk, down-

loaded, and used in graph pipelines. The two main formats are

edge lists (EL) and adjacency lists (AL), both of which are

ASCII encoded. On the back-end, we currently support two

structures. The first is a coordinate list (COO), which stores

non-zeros with their explicit row and column coordinates, and

the second a compressed sparse row (CSR), which stores non-

zero elements in a single contiguous block of memory and

a separate offsets block that stores the beginning of rows.

At the moment we support several basic preprocessing steps

such as removing self loops and symmetrizing the graph.

Current and future work includes more robust preprocessing

and support for additional formats. Figure 2 shows PIGO’s

high-level design meeting this requirement.

Finally, we build PIGO to be a C++11 header-only library,

allowing it to be easily integrated into projects and systems.

The programming interface is designed to be simple to learn

and quick to use, as shown in Section II-C. For further usabil-

ity, we have an experimental port which wraps PIGO into a

shared object, making it potentially available to applications

in C, Rust, Python, and more.

1 COO<Label, Ordinal, LabelStorage, Flags...>
COO { filename };

2 void COO.save(filename);
3 LabelStorage COO.x(); // Get row labels
4 LabelStorage COO.y(); // Get col labels

6 CSR<Label, Ordinal, LabelStorage,
OrdinalStorage, ...> CSR { filename };

7 void CSR.save(filename);
8 LabelStorage CSR.endpoints();
9 OrdinalStorage CSR.offsets();

11 Graph { filename } : CSR;
12 EdgeIt Graph.neighbors(Label v);

14 Matrix { filename } : CSR;
15 RowIt Matrix.row(Label r);

Fig. 3. The high-level API for PIGO.

B. Overview

PIGO reads and writes in parallel from a variety of ASCII

files along with custom binary files. Reading binary files is

straightforward: the size information for data can be quickly

encoded and read from the file header or metadata, and the

transfer itself consists of parallel and independent memcpy
calls. ASCII files, however, are the standard file format for

both large and small sparse matrices [12] and graphs [13].

PIGO handles reading and writing ASCII files with two

passes. We focus on reading throughout this paper, however

writing follows a similar strategy of first counting and then

copying. First, PIGO loads the input file into memory via

mmap2. In the first pass, the structure is read out in par-

allel. That is, the number of spaces, newlines, and integers

are counted—while ignoring comment lines and end-of-line

comments. After this, memory is allocated and a prefix sum

is performed so each thread knows its position in the back-

end memory to write to. The second parallel pass then iterates

over the file again, parses the integers and copies out the data.

C. Application Programming Interface

PIGO is used by declaring a back-end format and providing

a filename as input. PIGO then loads the file in parallel and

converts it appropriately into the requested back-end structure.

Parameters, such as the data types to use inside the matrix and

preprocessing flags, such as whether to symmetrize the matrix,

are given as template parameters.

In Figure 3 we show the main concept of our API. Our

complete API is documented in our repository.

Label contains the type of the row or column (or ver-

tex) labels. In many cases, it can be a 32-bit unsigned

integer. The Ordinal type contains the type that will

count (hence ordinal). If the number of edges is large, this

may need to be 64-bit. The Storage types indicate how

2mmap is a POSIX-compliant call to place the file contents into memory,
making the whole file available as a char*.
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1 #include "pigo.hpp"
2 #include <iostream>
3 int main(int argc, char** argv) {
4 pigo::Graph g { argv[1] };
5 for (auto n : g.neighbors(123))
6 std::cout << n << std::endl;
7 return 0;
8 }

Fig. 4. An example program using PIGO with default template values.

1 template <class vertex>
2 graph<vertex> readGraphFromFile(char* fname

, bool, bool) {
3 pigo::Graph<uintE, uintT,
4 uintE*, uintT*> g {fname};
5 long n = g.n();
6 long m = g.m();
7 uintT* offsets = g.offsets();
8 uintE* edges = g.endpoints();
9 // Continue with remaining Ligra code

10 ...
11 }

Fig. 5. A high-level replacement readGraphFromFile function for Ligra.
This will cause Ligra to read with PIGO, resulting in PIGO+Ligra.

PIGO should allocate the memory. PIGO supports raw point-

ers (T*), vectors (std::vector<T>), and shared pointers

(std::shared_ptr<T>). Finally, the Flags are used to

indicate various preprocessing steps, for example to sym-

metrize the file or to remove self loops.

D. Example Programs

Here we show two example uses of PIGO. The first is a

simple standalone program that a researcher might write to de-

velop some kernel. To install PIGO, only a single pigo.hpp
file is needed. The complete example can be seen in Figure 4.

For the next example, we show how to extend Ligra [3]

to PIGO+Ligra, allowing it to take advantage of signifi-

cantly improved binary and ASCII loading. The function

readGraphFromFile is replaced with the code in Figure 5.

As PIGO takes care of reading the file, and can handle

preprocessing steps, all that needs to occur beyond the PIGO

call is building Ligra’s vertex objects.

E. Algorithm Details

There are two main problems reading ASCII files. The first

is if we evenly partition the data into chunks, the partitions

may not line up on clean integer boundaries. The second is

that the destination to write to in memory is not known apriori.

We solve the first problem by adjusting the start and end

boundaries locally for each thread. Concretely, each thread

finds either the next newline or the next integral character

and sets that as the thread data boundary. For P threads, this

can result in up to P additional reads of bytes, however for

any reasonable file the number of bytes overlapping between

segments is a small constant. Solving the next problem is done

Input: memory mapped file F
1 N [1, . . . , num threads]← 〈0, 0〉
2 for chunk c ∈ F do in parallel
3 t← thread ID

4 N [t]← 〈 integer count , newline count 〉
5 allocate offsets, endpoints

6 prefixSum(N)
7 for chunk c ∈ F do in parallel
8 〈e, v〉 ← N [t]
9 foreach integer in c do

10 endpoints[e]← data

11 if passed newline then
12 offsets[v]← e
13 v ← v + 1
14 e← e+ 1

Algorithm 1: The core idea of the AL reading.
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Fig. 6. An example reading an AL in PIGO.

via the two passes described in Section II-B. Note that these

passes are done in parallel. We parallelize with OpenMP.

To make this more concrete, we present the core idea for

reading AL in Algorithm 1. A visual example is shown in

Figure 6. EL reading is similar but more simple, as N only

needs to contain newlines. Binary reading and writing simply

reads or writes in parallel at byte boundaries.

III. EXPERIMENTS AND RESULTS

In this section we present experiments and results. We

want to demonstrate that PIGO can read ASCII and binary

files significantly faster than known graph systems, providing

significant end-to-end improvements.

As exemplar graph systems, we use Ligra [3], GAPbs [4],

and Galois [5], chosen as leading systems. We are not aware

of any systems with a larger focus on I/O than them. We

compiled with GCC 9.1.0 and ran on a machine with 1TB of

RAM, an Intel DC P3700 2TB NVMe SSD connected with

PCIe 3.0, and two 18-core Intel Xeon E5-2695 v4 CPUs at

2.10 GHz. We ran Ubuntu 16.04 with ext4. Our datasets are

from the Network Repository [13] and SuiteSparse [12].

In Figure 7 we show the potential parallel improvement

for reading a large binary file starting from an empty, or

cold cache. A warm cache is common when running multiple

experiments or using a freshly downloaded file. With NVMe,

we show even a cold cache has parallel potential: reading
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Graphs are arranged in size, with com-Friendster 31 GB on disk and road-USA
940 MB. The last column is reading, converting to CSR, and then writing.

in parallel is around twice as fast as reading sequentially.

However, with warm caches, we show the memory of the

system becomes a factor. Here, reading in parallel is 15× faster

and gets close to the system memory bandwidth.

We stress there is a significant room for I/O improvement

beyond simply reading bytes in parallel, as evidenced by

PIGO’s overall performance gains. In Figure 8 we show the

loading times for graphs both from EL and from binary

formats. Galois uses mmap for binary files and Ligra can either

use mmap or fread, with subsequent parallel preprocessing.

Galois has the second best binary reading yet the slowest
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Fig. 9. A scalability study showing the impact of increasing threads on UK-
2002. The NUMA boundary is reached at 18 cores, after which scalability only
continues to increase for ASCII processing and COO to CSR conversions.

ASCII reading. PIGO remains faster in all cases. For both

Ligra and GAPbs, loading from EL and converting to CSR

with PIGO is faster than loading binary files without PIGO.

We show the scalability in Figure 9. Up to the NUMA

boundary scalability increases with all approaches. Overall,

we have shown that PIGO provides significant performance

improvements.

IV. CONCLUSION

We tackle the long-standing belief that parallel I/O is not

fruitful for loading sparse matrix and graph files. While there

may be limited parallel improvements to cold cache raw binary

reads over SATA, we show there is much to be gained with

RAID controllers, NVMe SSDs, or a warm cache. We intro-

duce a simple to use, header-only C++ library that enables both

highly-tuned graph systems and small, one-off graph kernels

to take advantage of parallel I/O. Our library is open source

and it brings over 40× end-to-end performance improvements

to state-of-the-art graph and sparse matrix systems.
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[8] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu,
“Mqsim: A framework for enabling realistic studies of modern multi-
queue ssd devices,” in 16th USENIX Conference on File and Storage
Technologies (FAST 18), 2018, pp. 49–66.

[9] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proceedings of the 1988 ACM
SIGMOD international conference on Management of data, 1988, pp.
109–116.

[10] M. Jung, “OpenExpress: Fully hardware automated open research frame-
work for future fast NVMe devices,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 2020, pp. 649–656.

[11] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
“The new ext4 filesystem: current status and future plans,” in Proceed-
ings of the Linux symposium, vol. 2. Citeseer, 2007, pp. 21–33.

[12] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis,
M. Henderson, Y. Hu, and R. Sandstrom, “The SuiteSparse matrix
collection website interface,” Journal of Open Source Software, vol. 4,
no. 35, p. 1244, 2019.

[13] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

279

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:45:12 UTC from IEEE Xplore.  Restrictions apply. 


		2021-06-22T09:10:33-0400
	Preflight Ticket Signature




