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Abstract—Sparse matrices are widely applicable in data anal-
ysis while the theory of matrix processing is well-established.
There are a wide range of algorithms for basic operations such
as matrix-matrix and matrix-vector multiplication, factorization,
etc. To facilitate data analysis, GraphBLAS API provides a set
of building blocks and allows for reducing algorithms to sparse
linear algebra operations. While GPGPU utilization for high-
performance linear algebra is common, the high complexity of
GPGPU programming makes the implementation of GraphBLAS
API on GPGPU challenging. In this work, we present a GPGPU
library of sparse operations for an important case — Boolean
algebra. The library is based on modern algorithms for sparse
matrix processing. We provide a Python wrapper for the library
to simplify its use in applied solutions. Our evaluation shows that
operations specialized for Boolean matrices can be up to 5 times
faster and consume up to 4 times less memory than generic, not
the Boolean optimized, operations from modern libraries. We
hope that our results help to move the development of a GPGPU
version of GraphBLAS API forward.

Index Terms—sparse linear algebra, GPGPU, boolean semir-
ing, sparse boolean matrix

I. INTRODUCTION

One technique to efficiently solve a data analysis problem

is to formulate it in terms of operations over vectors and

matrices (in terms of linear algebra). This way it is possible

to employ a set of reliable mathematical tools and solutions.

Another advantage of this approach is the ability to evaluate

the problem by high-performance linear algebra libraries,

which utilize modern hardware, provide various optimization

techniques, and allow one to prototype a solution in code with

predefined building blocks quickly and safely. GraphBLAS

API [1] is one of the standards that introduce such building

blocks. GraphBLAS takes into account the sparsity of data by

using sparse formats of matrices and vectors, and generalizes

the building blocks by operating with arbitrary monoids and

semirings. While initially GraphBLAS was focused on graph

analysis, it was shown that the proposed approach can be

successfully used for data analysis in other areas, such as

computational biology [2] and machine learning [3].

GPGPU utilization for data analysis and for linear alge-

bra operations is a promising way to high-performance data

analysis because GPGPU is much more powerful in parallel

data processing. Unfortunately, GPGPU programming is very

challenging. It introduces heterogeneous device model into the

system, memory traffic, and data operations limitations, as well

as requires taking into account vendor-specific capabilities.

Best to our knowledge, there is no complete implementation

of GraphBLAS API on GPGPU, except for the GraphBLAST

project [4], which is currently in active development.

The sparsity of data introduces issues with load balancing,

irregular data access, thus sparsity complicates the imple-

mentation of high-performance algorithms for sparse linear

algebra on GPGPU even more. As a result, there is a huge

number of different formats for sparse matrices and vectors

representation, such as CSR, COO, Quad-tree, and a huge

number of algorithms for operations over these formats. Gao

et al. [5] provides a significant survey of sparse matrix-matrix

multiplication algorithms. Algorithms for different operations,

such as matrix-matrix multiplication and matrix-vector mul-

tiplication are developed independently. Thus, there are no

sparse linear algebra libraries based on the state-of-the-art al-

gorithms. Moreover, existing libraries, such as cuSPARSE [6],

clSPARSE [7], or more modern CUSP [8] or bhSPARSE [9],

are focused on numerical computations over floats or doubles,

not on generic data processing over arbitrary semirings which

is required for GraphBLAS API implementation.

An important partial case of linear algebra is the sparse

Boolean linear algebra. Boolean algebra is suitable for prob-

lems over a finite set of values, such as transitive closure of

a relation or a graph, regular and context-free path queries

for graphs [10], as well as parsing for different classes of

languages, such as Context-Free [11], Boolean and Conjunc-

tive [12], Multiple Context-Free (MCFL) [13]. Moreover,

some operations over the Boolean semiring can be used as

building blocks for algorithms over other semirings. Thus,

sparse Boolean linear algebra is an important partial case both

as a way to solve applied problems and as a building block

for other algorithms. However, a library for sparse Boolean

linear algebra on GPGPU does not exist.

In this paper, we present the implementation of Sparse

Boolean Linear Algebra (SPbLA) library as two stand-alone

self-sufficient computational backends for two most popular

GPGPU platforms: NVIDIA Cuda and OpenCL. Cuda is a

GPGPU technology for NVIDIA devices which employs some
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Fig. 1. Sparse Boolean linear algebra library architecture.

platform-specific facilities, such as unified memory mecha-

nism, and allows to make architectural assumptions which

gives more optimizations space at the cost of portability.

OpenCL is a platform-agnostic API standard, which allows

for running computations on different platforms, such as

multi-threaded CPUs, GPUs, and FPGAs. Our implementation

relies on modern techniques of sparse matrices processing

and exploits some optimizations, related to the Boolean data

processing. Moreover, we provide a Python API to simplify

utilization of our library. Preliminary evaluation shows that

such operation as matrix-matrix multiplication specialized for

Boolean matrices can be up to 5 times faster and consume up

to 4 times less memory in comparison with general-purpose,

not the Boolean optimized, operations from such libraries as

CUSP or cuSPARSE.

II. LIBRARIES DESIGN

Implemented SPbLA library backends for NVIDIA Cuda

and OpenCL platforms are called cuBool and clBool respec-

tively. The general architecture of the SPbLA is depicted

in figure 1. The core of the library is written in the C++

programming language, which is well-suited for performance

and resource critical computational tasks. The GPU related

logic is in the platform specific backends. The library exposes

C compatible API, which gives expressiveness and allows

one to embed that API into other execution environments

by interoperability mechanisms. Pyspbla package encapsulates

such functionality and provides it for the high-level Python

runtime.

It is worth to mention, that the library is still being worked

on. At this time clBool and cuBool are distinct backends, but

they will be integrated into a single library. This integration

is planned for the near future. This process requires careful

selection of the interface to allow the end user to properly

configure the library for specific tasks, as well as to provide

the option to automatically select a specific implementation

depending on the capabilities of the target device.

However, cuBool already provides all the functionality

described in the figure 1. It has a C compatible API, multiple

backends for Cuda and CPU computations, a Python wrapper,

and it is the lightweight version of the SPbLA without OpenCL

computations.

Library operates on the boolean semiring with values set

{true, false} with false as an identity element, ’+’ operation is

defined as logical or and ’×’ is defined as logical and. Values

are also denoted as {1, 0} respectively, and the abbreviation

nnz(M) gives the number of non-zero cells of the matrix M .

The main primitive is a sparse matrix of boolean values,

stored in one of the sparse formats. The sparse vector is

partially presented. Its full support will be added in the future.

All available operations and functions are the following.

• Create sparse matrix M of size m× n.

• Delete sparse matrix M .

• Fill matrix with values {(i, j)k}k.

• Read matrix values {(i, j) | Mi,j = 1}.

• Transpose M = NT .

• Sub-matrix extraction M = N [i..m, j..n].
• Matrix to vector reduce V = reduceToColumn(M).
• Matrix-matrix multiplication C += M ×N .

• Matrix-matrix element-wise addition M += N .

• Matrix-matrix Kronecker product K = M ⊗N .

III. IMPLEMENTATION DETAILS

In this section we discuss the particular implementation

details of the proposed backends. Although general structure

and architecture are similar, the internal storage formats and

algorithms are different. With this development strategy, we

address the potential problem of processing the sparse data

with different values distribution, as well as the problem of

proper balancing between time of the execution and memory

consumption.

A. Backend cuBool

cuBool is a sparse boolean linear algebra implementation

developed specially for NVIDIA Cuda platform. The core of

this backend relies on Cuda C language and API. Also cuBool

employs NVIDIA Thrust auxiliary library, which provides

implementation for generic data containers and operations,

such as iterating, exclusive or inclusive scan, map, etc., which

are executed on Cuda device. The algorithms can be expressed

in terms of high-level optimized primitives, which increases

code readability and reduces time for development.

Sparse matrices are stored in the compressed sparse row
(CSR) format with only two arrays: rowspt for row offset

indices and cols for columns indices. There is no need to store

any values in boolean sparse matrices, thus 1 values are en-

coded only as (i, j) pairs. This means that it is possible to store

a matrix M of size m× n in (m+ nnz(M))× sizeof(index t)
bytes of GPU memory, where index t is the type of stored

indices, which can be selected to be uint32 t for simplicity.

We use the algorithm Nsparse [14] for matrix-matrix mul-

tiplication. This algorithm is an adaptation of the state-of-the-

art, efficient and memory saving sparse general matrix multi-

plication (SpGEMM) algorithm, proposed in Yusuke Nagasaka

et al. research [15] for boolean values. This algorithm was

selected because it has a relatively small memory footprint

for large matrices processing, as well as it compares favorably
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with other major Cuda SpGEMM implementations, such as

cuSPARSE or CUSP.

Matrix-matrix addition is based on GPU Merge Path al-

gorithm [16] with dynamic work balancing and two pass

processing. These optimizations give better workload dispatch

among execution blocks and allow for more precise memory

allocations in order to keep memory footprint small.

B. Backend clBool

clBool is a sparse boolean linear algebra implementation

for OpenCL platform. This backend is implemented in C++

with OpenCL kernels, packed into executable code at compile

time.

Sparse matrix primitive is stored in the coordinate format
(COO) with two arrays: rows and cols for row and column

indices of the stored non-zero values. For the matrix M of size

m×n, the memory consumption is 2×nnz(M)×sizeof(index t).
This format was selected instead of CSR, because COO gives

better memory footprint for very sparse matrices with many

empty rows.

Matrix-matrix multiplication implementation is based on

the algorithm, proposed in the paper by Yusuke Nagasaka et

al. [15] as well. Since this algorithm was designed originally

for processing CSR matrices on Cuda devices, it is modified

to work on OpenCL platform. In particular, input matrices

are converted from COO into doubly compressed sparse row
(DCSR) [17] format, because a COO rows array slows down

the rows indexing process.

Matrix-matrix addition is based on the GPU Merge Path

algorithm as well. Since all COO matrix values are stored

continuously, its addition can be treated as the merge of two

sorted arrays, whereas the matrix merge in CSR is computed

on a per row basis. This operation is implemented in two steps:

merge and duplicates reduce. In the first step it allocates a

single merge buffer of size nnz(A)+nnz(B), where merge result

is stored with possible duplicates. Although this approach

is simple and straightforward, it can negatively affect the

memory consumption for large matrices with lots of duplicated

non-zero values at the same positions.

IV. EVALUATION

We evaluate the applicability of the proposed backends for

analysis of some real-world matrix data. The experiments

are designed as computational tasks, that arise as stand-alone

or intermediate steps in the solving of practical problems.

The purpose of the evaluation is to show the performance

gain between the Boolean optimized and general-purpose

operations. The comparison is not entirely fair, but the Boolean

optimized libraries for GPU have not be introduced yet.

For evaluation, we used a PC with Ubuntu 20.04 installed.

It has Intel Core i7-6700 CPU, 3.40Hz, DDR4 64Gb RAM

and GeForce GTX 1070 GPU with 8Gb VRAM. We measure

only the execution time of the operations themselves. The

actual data is assumed to be loaded into the VRAM or RAM

respectively in the appropriate format, required for the target

TABLE I
SPARSE MATRIX DATA FOR EVALUATION.

№ Matrix M # Rows Nnz of M Nnz of M2 Nnz of M + M2

0 wing 62,032 243,088 714,200 917,178
1 luxembourg osm 114,599 239,332 393,261 632,185
2 amazon0312 400,727 3,200,400 14,390,544 14,968,909
3 amazon-2008 735,323 5,158,388 25,366,745 26,402,678
4 web-Google 916,428 5,105,039 29,710,164 30,811,855
5 roadNet-PA 1,090,920 3,083,796 7,238,920 9,931,528
6 roadNet-TX 1,393,383 3,843,320 8,903,897 12,264,987
7 belgium osm 1,441,295 3,099,940 5,323,073 8,408,599
8 roadNet-CA 1,971,281 5,533,214 12,908,450 17,743,342
9 netherlands osm 2,216,688 4,882,476 8,755,758 13,626,132

tested framework. Time to load data from the disc and prepare

initial matrices state is excluded from the time measurements.

We use four sparse matrix libraries, CUSP, cuSPARSE,

clSPARSE for GPU and SuiteSparse for CPU. CUSP provides

a template based implementation for operations, however it

does not provide extra optimizations especially for boolean

case values. Both cuSPARSE and clSPARSE provide op-

erations only for types such as float or double. However

this limitation can be ignored, if we consider non-zero float

values as true. SuiteSparse is a GraphBLAS API reference

implementation for CPU with built-in boolean semiring.

For performance evaluations, we selected 10 various square

matrices, which are widely used for sparse matrices bench-

marks, from the Sparse Matrix Collection at University of

Florida [18]. Information about matrices is summarized in

table I. These matrices were selected because they correspond

to (un)directed graphs and they are suitable for a correct

application of multiplication and addition operations. For a

detailed study, it is necessary to carry out measurements on

specific algorithms and data.

The results of the evaluation are summarized in tables II

and III. Time is measured in milliseconds. Peak VRAM usage

for GPU targets and peak RAM usage for SuiteSparse is

measured in megabytes. The result for each experiment is

averaged over 10 runs. The cell is left blank if the operation

is not implemented in a library.

The first experiment is intended to measure the performance

of the matrix-matrix multiplication as M×M . The results are

presented in the table II. We can see that cuBool and clBool

show best performance among competitors. CUSP, cuSPARSE

and clSPARSE have good performance as well. However, they

have significant memory consumption, which can negatively

affect on processing of large data.

The second experiment is intended to measure performance

of the element-wise matrix-matrix addition as M+M2, where

evaluation of the matrix M2 is excluded from measurements.

The results are presented in the table III. CUSP and cuSPARSE

show nearly best performance among almost all runs. cuBool

and clBool show good performance as well. Memory con-

sumption for cuBool is relatively small compared to other GPU

libraries. Thus, there is still space for clBool optimizations, so

it requires a deep investigation in our future research.
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TABLE II
MATRIX-MATRIX MULTIPLICATION EVALUATION RESULTS

(TIME IN MILLISECONDS, MEMORY IN MEGABYTES).

M cuBool clBool CUSP cuSPRS clSPRS SuiteSprs
№ Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

0 1.9 93 1.9 89 5.2 125 20.1 155 4.2 105 7.9 22
1 2.4 91 2.0 89 3.7 111 1.7 151 6.9 97 3.1 169
2 23.2 165 55.5 163 108.5 897 412.8 301 52.2 459 257.6 283
3 33.3 225 82.1 221 172.0 1409 184.8 407 77.4 701 369.5 319
4 41.8 241 127.6 239 246.2 1717 4761.3 439 207.5 1085 673.3 318
5 18.1 157 14.2 153 42.1 481 37.5 247 56.6 283 66.6 294
6 22.6 167 16.9 165 53.1 581 46.7 271 70.4 329 80.7 328
7 23.2 151 16.9 159 32.9 397 26.7 235 68.2 259 56.9 302
8 32.0 199 23.4 211 74.4 771 65.8 325 98.2 433 114.5 344
9 35.3 191 24.9 189 51.0 585 51.4 291 102.8 361 90.9 311

TABLE III
ELEMENT-WISE MATRIX-MATRIX ADDITION EVALUATION RESULTS

(TIME IN MILLISECONDS, MEMORY IN MEGABYTES).

M cuBool clBool CUSP cuSPRS clSPRS SuiteSprs
№ Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

0 1.1 95 1.9 105 1.4 105 2.4 163 - - 2.3 176
1 1.7 95 1.6 109 1.0 97 0.8 151 - - 1.6 174
2 11.4 221 23.8 543 16.2 455 24.3 405 - - 37.2 297
3 17.5 323 35.4 877 29.5 723 27.2 595 - - 64.8 319
4 24.8 355 43.1 989 31.9 815 89.0 659 - - 77.2 318
5 16.9 189 12.5 359 11.2 329 11.6 317 - - 36.6 287
6 19.6 209 15.4 429 14.5 385 16.9 357 - - 45.3 319
7 19.5 179 10.5 321 10.2 303 10.5 297 - - 28.5 302
8 30.5 259 22.4 579 19.4 513 20.2 447 - - 65.2 331
9 30.1 233 18.6 457 14.8 423 18.3 385 - - 50.2 311

V. CONCLUSION

In this paper we present a library for sparse Boolean linear

algebra which implements such basic operations as matrix-

matrix multiplication and element-wise matrix-matrix addition

in both Cuda and OpenCL. Evaluation shows that our Boolean-

specific implementations faster and require less memory than

generic, not the Boolean optimized, operations from state-of-

the-art libraries. Thus, the specialization of operations for this

data type makes sense.

The first direction of the future work is to integrate all

parts (OpenCL and Cuda backends) into a single library and

improve its documentation and prepare to publish. Moreover,

it is necessary to extend the library with other operations,

including matrix-vector operations, masking, and so on. As

a result a Python package should be published.

Another important step is to evaluate the library on different

algorithms and devices. Namely, algorithms for RPQ and

CFPQ should be implemented and evaluated on related data

sets. Also, it is necessary to evaluate OpenCL version on

FPGA which may require additional technical effort and code

changes.

Finally, we plan to discuss with GraphBLAS community

possible ways to use our library as a backend for GraphBLAST

or SuiteSparse in case of Boolean computations. Moreover, it

may be possible to use implemented algorithms as a founda-

tion for generalization to arbitrary semirings.

APPENDIX

SPbLA library, cuBool and clBool backends are avail-

able at https://github.com/JetBrains-Research/spbla, https://

github.com/JetBrains-Research/cuBool and https://github.com/

mkarpenkospb/sparse boolean matrix operations.
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