PageRank Pipeline Benchmark: Proposal for a Holistic System Benchmark for Big-Data Platforms

Patrick Dreher1,4, Chansup Byun2, Chris Hill3, Vijay Gadepally1,2
Bradley C. Kuszmaul1, Jeremy Kepner1,2

1MIT Computer Science & AI Laboratory; 2MIT Lincoln Laboratory Supercomputing Center; 3MIT Department of Earth, Atmospheric and Planetary Sciences; 4Department of Computer Science, North Carolina State University

Graph Algorithms Building Blocks Workshop (GABB 2016)
30th IEEE International Parallel & Distributed Processing Symposium
Chicago, IL May 2016
Outline

• Growth of Big Data and the Value of Information
• Big Data Attributes
• Benchmarking Big Data Systems
• Benchmark Shortcomings and Ambiguities
• Development of a Simple Big Data Benchmark
• Results
• Summary – Next Steps
Growth of Big Data and the Value of Information

- Processing/analysis of data is an essential aspect of many domain/subject matter areas
- Data itself is witnessing large increases in
 - Volume – amount of data
 - Velocity - rate at which data is being collected
 - Variety/types – characteristics and properties of the data
 - Variability – complex time dependent changes among volume, variety and variability
- Recognized that valuable information is contained in the data
- To access that information need to develop
 - hardware architectures
 - software environments
- Must validate these big data systems with reliable benchmarks
Common Architecture for Connecting Diverse Data and Users
High Performance Data Analysis Attributes

Store
- Pull data from networked sources
- Store data as raw files
- Select files for further processing
- Parse files into standard forms
- Filter for records of interest
- Enrich records with other data
- Ingest into database
- Correlate data in bulk
- Construct graph relationships
- Bulk analyze graphs

Search
- Verify permissions
- Display query metadata
- Collect query logic
- Collect query arguments/seed
- Form and optimize query
- Execute search
- Extend search/hop
- Correlate results, graph analysis
- Summarize results/cluster
- Anonymize results

Admin
- Create, start, stop, checkpoint, clone, upgrade, restart, …
Workload Analysis Bottlenecks

<table>
<thead>
<tr>
<th>Store</th>
<th>Search</th>
<th>Admin</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pull data from networked sources</td>
<td>- Verify permissions</td>
<td>- Create new big data system</td>
</tr>
<tr>
<td>- Store data as raw files</td>
<td>- Display query metadata</td>
<td>- Start big data system</td>
</tr>
<tr>
<td>- Parse files for further processing</td>
<td>- Collect query logic</td>
<td>- Stop big data system</td>
</tr>
<tr>
<td>- Filter for records of interest</td>
<td>- Form and optimize query</td>
<td>- Checkpoint big data system</td>
</tr>
<tr>
<td>- Enrich records with other data</td>
<td>- Execute search</td>
<td>- Clone big data system</td>
</tr>
<tr>
<td>- Ingest into database</td>
<td>- Extend searchhop</td>
<td>- Upgrade big data system</td>
</tr>
<tr>
<td>- Construct graph relationships</td>
<td>- Correlate results, graph analysis</td>
<td>- Restart big data system</td>
</tr>
<tr>
<td>- Bulk analyze graphs</td>
<td>- Summarize results, graph cluster</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Anonymize results</td>
<td></td>
</tr>
</tbody>
</table>

Network Bandwidth
- Internal
- External

Storage
- Bandwidth
- Capacity
- Metadata rate

Database
- Memory
- Load balance
- Locks
- Hotspots

String parsing
- Scheduler overhead
- Version lock
- Programmer effort

- Large number of existing Big Data benchmarks
- Shortcoming is that most are easily tuned and therefore have a weak correlation with application performance
Goal: Develop Benchmark Performance That Correlates with Application Performance

• HPC community benchmarks have
 – Long tradition of developing various methodologies for creating rigorous benchmarks for hardware architectures and software environments
 – Emphasize performance and scalability

• Develop similar rigorous methodologies for creating data intensive benchmark(s) that
 – Test both the hardware architecture and software systems
 – Amenable to implementation in diverse environments
 – Reflect realistic workflows
 • Incorporate kernels emphasizing reads, writes, sorts and shuffles
 • Fully measure the substantial extract-transform-load costs of data movement prior to focusing on higher-order benchmark kernels
Select a Benchmark Appropriate to Measure Big Data Application Performance

• Build a big data benchmark from among a choice of four types of benchmark categories
 – Goal-oriented (Graph500 Sort \(^a\))
 – Algorithm-oriented (NAS \(^b\))
 – Code-oriented (Top500 \(^c\), HiBench \(^d\))
 – Standards-oriented (HPC Challenge \(^e\))

• Selected algorithm-oriented benchmark category
 – Allows maximum flexibility to test total system implementation
 – Allows re-implementation in diverse environments
 – Can benchmark both hardware and software

\(^a\) http://www.graph500.org/

\(^b\) https://www.nas.nasa.gov/Software/NPB/

\(^c\) http://www.top500.org/project/

\(^d\) https://www.ibm.com/support/knowledgecenter/SSGSMK_7.1.1/mapreduce_integration/map_reduce_hibench.dita

\(^e\) http://icl.cs.utk.edu/hpcc/
PageRank Pipeline Algorithm

• PageRank selected because of algorithm’s inherent simplicity and generality
 – Builds on existing prior scalable benchmarks (Graph500, Sort, and PageRank)
 – Well defined mathematically and can be implemented in any programming environment
 – Provides rigorous definition of both the input and the output for each kernel
 – Emulates data operations not solely governed by the CPU speed in the hardware platform
 – Quantitatively compare a wide range of present day and future systems because it is scalable in both problem size and hardware

• Constructs a data pipeline flow that
 – Creates a holistic benchmark with multiple integrated kernels
 – Implements ordered set of kernels with reads, writes, sorts and shuffles with process characteristics and similarities to big data applications
 – Kernels can be run together or independently
 – Reflects characteristics many data analytics workloads
 – Can be used to build a whole-system benchmark focused toward measuring performance of emerging Big-Data architectures
PageRank Pipeline Benchmark

• Construct a pipeline sequence of four benchmark kernels based on the PageRank algorithm that can mimic the full workload required to perform PageRank on a random graph

 – Kernel 0
 generate graph edges (Graph 500* generator) and writes output to storage

 – Kernel 1
 Read files from Kernel 0, sort edges by start vertex, write to non-volatile storage

 – Kernel 2
 Read files from Kernel 1, construct adjacency matrix
 Compute in-degree and eliminate high and low degree nodes
 Normalize each row by total number of edges in row
 Weight the sparse matrix values

 – Kernel 3
 From output of Kernel 2 perform 20 iterations of PageRank on normalized adjacency matrix (sparse matrix vector multiply)

PageRank Pipeline Benchmark

Serial Code Reference Implementations

<table>
<thead>
<tr>
<th>Language</th>
<th>Source Lines of Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>494</td>
</tr>
<tr>
<td>Python</td>
<td>162</td>
</tr>
<tr>
<td>Python w/Pandas</td>
<td>162</td>
</tr>
<tr>
<td>MATLAB</td>
<td>102</td>
</tr>
<tr>
<td>Octave</td>
<td>102</td>
</tr>
<tr>
<td>Julia</td>
<td>162</td>
</tr>
</tbody>
</table>

- ~10 lines of math
- Easy to implement
- References (listed below) for implementation in many popular languages *

Intel Xeon E5-2650 (2 GHz) (16 cores) with 64 Gbytes of memory and InfiniBand and 10 GigE interconnects

* The source code listing for the PageRank Pipeline Benchmark in each of the languages (C++, Julia, MATLAB, Python and Octave) is located here
 https://github.com/vijaygadepally/PageRankBenchmark/tree/master/code
* There is a README.txt with information how to run the benchmark that is located here
 https://github.com/vijaygadepally/PageRankBenchmark/blob/master/README.txt
There are 2 inputs to the PageRank Pipeline Benchmark Algorithm:
- Scale factor S that determines maximum number of vertices
- Edges per vertex factor k

- Maximum number of vertices $N = 2^S$
- Maximum number of edges $= kN$
- The scale and vertex factors determine the overall size of the graph
- The speed of the sort ordering varies depending on the matrix size
- Scale sizes chosen sufficiently large to limit any L3 cache advantage for in-memory computations

<table>
<thead>
<tr>
<th>Scale</th>
<th>Max Vertices</th>
<th>Max Edges</th>
<th>~Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>65K</td>
<td>1M</td>
<td>25MB</td>
</tr>
<tr>
<td>17</td>
<td>131K</td>
<td>2M</td>
<td>50MB</td>
</tr>
<tr>
<td>18</td>
<td>262K</td>
<td>4M</td>
<td>100MB</td>
</tr>
<tr>
<td>19</td>
<td>524K</td>
<td>8M</td>
<td>201MB</td>
</tr>
<tr>
<td>20</td>
<td>1M</td>
<td>16M</td>
<td>402MB</td>
</tr>
<tr>
<td>21</td>
<td>2M</td>
<td>33M</td>
<td>805MB</td>
</tr>
<tr>
<td>22</td>
<td>4M</td>
<td>67M</td>
<td>1.6GB</td>
</tr>
</tbody>
</table>
Kernel 0: Generate Graph

- Approximately power-law graph
- Essentially utilizes algorithm of Graph500 graph generator
- I/O Intensive
- Untimed
Kernel 1: Sort Edges

- I/O intensive
- Network intensive
- Storage cache may inevitably impact Kernel 1 results
Kernel 2: Filter Vertices

- I/O intensive
- Memory intensive
Kernel 3: PageRank

- Memory intensive
- Compute intensive
Summary and Next Steps

• PageRank is useful for benchmarking big data workloads in a variety of hardware architectures and software environments

• Allows benchmarks to be measured with variations in platform configurations that include
 – Use of local disks versus remote storage
 – Various network interconnects among servers
 – Different cache sizes in the server

• For each type of platform configuration, various sizes of adjacency matrices can be constructed and sorting speeds measured for each type of hardware and software configuration using the PageRank algorithm

• Next Steps
 – Develop full math specification
 – Serial and parallel reference implementations
Questions *

* Corresponding author dreher@mit.edu