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“Pass the Hash” Hacking Technique 

Adversaries enter a network and 

obtain local administrator (LA) 

status on a computer. 

Can access the credential store 

(CS) and steal any credentials 

left on the computer. 

Use stolen credentials to log into 

other computers with LA status. 

Repeat until they obtain a high 

enough credential to log into any 

computer in the network and 

control it (domain controller). 
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Maintaining a Network 

Given a snapshot in time of a 

computer network including local 

administrator and credential 

store data  

What are all the paths an 

adversary could take? 

Can we quantify the risk level of 

the network? 

Given a stream of network data 

Answer the above questions in 

real-time 

Identify adversaries as they 

make their attack 
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Network model and questions 

Model network as a graph 

Vertices are IP addresses 

Detection graph 

Edges indicate when an event takes place 

Reachability graph 

Edges indicate common credential between two computers 

For a given set of credentials, what are all the paths that could lead to that credential  

Constraints on the graph require the communicating system to use a credential that has local 

administrator privilege on the target machine  

Static graph 

Take all data from a time period (e.g., one day) and look at that graph 

Evolving graph 

As events occur edges are created 

When credentials expire the edge is removed 

Risk metric / Cross section 

For a randomly selected node in the network, what is the probability having a path to a certain 

credential? 

How does this number change over time (i.e. as hashes expire in the credential store, and new 

credentials are deposited? 

Can signatures of path traversal along the reachability graph be detected in 

existing data? 
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What we are looking for 

Find paths from outside a network to high level computer 

Too many paths = network at risk 

How to find paths 

Use graph adjacency matrix, ὃ 

ὃ  counts walks of length Ὧ between all pairs of vertices 
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═▓ counts walks of length ▓ in the graph 
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Number of walks of length Ὧ ρ from Ὥ to Љ (ύȟЉ) times number of edges from Љ to Ὦ 
(ὥЉȟ) yields the number of walks of length Ὧ from Ὥ to Ὦ in which the second to last 

vertex in the walk is Љ. 
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What we are looking for 

Find paths from outside a network to high level computer 

Too many paths = network at risk 

How to find paths 

Use graph adjacency matrix, ὃ 

ὃ  counts walks of length Ὧ between all pairs of vertices 

Use symbolic adjacency matrix: 

 

 

 

Then Ὓ  keeps track of what the walks are 

ὡ Ὃ В ὃ is a matrix which counts walks of length Ὧ (recall for 

later)  

В Ὓ keeps track of the walks of length Ὧ 

Takes up a lot of memory 
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Our data 

Have network traffic data in the form of Windows event logs 

Source IP 

Host IP 

Event ID (logon, logoff, error, password change, …) 

Timestamp 

Username 

Etc. 

One day of network data 

Nodes – |V| = 4,661 

Including perimeter data can introduce millions of vertices 

Edges – |E| = 15,466 

Began with 4,433,142 events and threw away parallel edges 

Average degree = 6.6 

Network diameter = 7 
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Clustering coefficient, average/max out 

degree, and diameter  
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Clustering coefficient vs. Number of 

vertices 
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Matrix Sparsification – version 1 

Input 

ὃᶰᴙ ȟὄᶰᴙ , constant ρ ὧ ὲ, probability distribution ὴ  

Output 

ὅᶰᴙ  (columns selected from ὃ), Ὑᶰᴙ  (rows selected from ὄ) 

Procedure 

For ὸ ρȟȣȟὧ choose Ὥᶰρȟȣȟὲ with probability ὖὭ Ὧ ὴ 

independently with replacement 

Let ὅȟ  
ȟ

 
 for Ὦ ρȟȣȟά and Ὑȟ  

ȟ

 
 for Ὧ ρȟȣȟὴ 

Column ὸ of ὅ is multiple of column Ὥ of ὃ, row ὸ of Ὑ is multiple of  row Ὥ of ὄ 

Assuming we chose good ὴ, the resulting ὅẗὙ can provide a good 

approximation for ὃẗὄ 
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Matrices I: Approximating Matrix Multiplication, SIAM Journal on Computing, vol. 36(1): pp. 132 – 157  
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Matrix Sparsification – version 1 (cont.) 

Approximating ὃẗὄ with ὅẗὙ 

Assuming nearly optimal probabilities (‍ depends on ὴ ) 

 

 

For ‏ᶰ πȟρȟ– ρ  ÌÏÇ then with probability ρ  :‏

 

 

Using matrix sparsification technique won’t allow for approximating 

odd matrix powers 

If ὃ ὄ is ὲ ὲ then ὅ is ὲ ὧ, and Ὑ is ὧ ὲ 

ὅẗὙ is ὲ ὲ, but multiplying again by ὅ yields an ὲ ὧ matrix 
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Matrix Sparsification – version 2 

Input 

ὃᶰᴙ ȟὄᶰᴙ , constant ρ ὧ ὲ, probability distributions ὴ
ȟ

ȟ
 

and ή
ȟ

ȟ
 

Output 

Ὓɴ ᴙ , Ὑᶰᴙ  

Procedure 

Select elements from ὃ using probability distribution ὴ (elements of Ὓ are 

either ὃ Ⱦὴ  or π) 

Select elements from ὄ using probability distribution ή (elements of Ὑ are 

either ὄȾή  or π) 

This is equivalent to throwing away edges of a graph Ὃ whose 

adjacency matrix is ὃ ὄ and then reweighting those edges that 

remain. 

Removes some paths of interest 
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Graph Minors 

Given a graph, Ὃ, and a pair of adjacent vertices, όȟὺᶰὠὋ , we form 

the minor, Ὃ ȟ , by 

Removing όȟὺ from the vertex set 

Adding new vertex όὺ 

Replacing all edges ὼȟό and ώȟὺ where ὼȟώ όȟὺ with ὼȟόὺȟώȟόὺ 

 

 

 

 

Do not create loop, i.e., όὺȟόὺɵ ὉὋ ȟ  

In undirected graph, paths are preserved under minor operation 

Lose information about two vertices after each minor operation 
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Relationship to coarsening 

Similar to the strict aggregation (SAG) scheme for multilevel graph 

partitioning 

Vertices partitioned into disjoint groups based on edge weights within and 

between partitions 

All vertices in partition contracted into a single vertex 

 

 

 

 

 

We contract one edge at a time 

February 26, 2013 
 Chevallier, Cédric; and Safro, Ilya. Comparison of coarsening schemes for multilevel graph partitioning. In Thomas Stützle, editor, 

Learning and Intelligent Optimization, volume 5851 of Lecture Notes in Computer Science, pages 191–205. Springer-Verlag, 2009. 
19 

Representation of SAG scheme from Chevallier, Safro 2009 



“Sparse” minors 

Goal is to get smaller adjacency matrix and use well known dense 

matrix multiply algorithms 

Find “sparse pair” of adjacent vertices to contract 

Vertices όȟὺ such that ὨὩὫό ὨὩὫὺ is small and όȟὺᶰὉὋ  

 

 

 

 

 

 

 

 

Do ὓ edge contractions to yield graph Ὃ  with adjacency matrix ὃ  
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Measures of accuracy 

After taking minors, compute ὡ Ὃ  and ὡ Ὃ  

There is a set of vertices, ὠ , that are common to both Ὃ and Ὃ  

Vertices in Ὃ which were not removed by an edge contraction 

Vertices in Ὃ  which were not created as a result of an edge contraction 

Compare sub-matrices restricted only to the vertices in ὠ  

Define 

 

 

The ὭȟὮ entry of Ὀȟ  is the number of walks of length Ὧ from Ὥ to Ὦ in 

Ὃ as a percentage of the total number of walks of length Ὧ minus the 

same quantity for Ὃ . 

ẗ  the ὒ norm of the matrix (the sum of its entries) 
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Data 

23 

Average of the absolute values of the entries of Ὀ ȟ , 
with ά  ςπȟτπȟȣȟτψπ, for an Erdős-Rényi (ὴ πȢυ) 
and scale-free random graph with ὠ ρπππ. 

Average of the absolute values of the entries of Ὀ ȟ , 
with ὓ ρππȟςππȟȣȟὠ ςϳ , for randomly chosen 
induced subgraphs of our cybersecurity graphs with ὠ 
values as indicated. 
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Observations and Future work 

Performance of minors algorithm 

Poor performance on full comparison – total number of walks 

Fewer vertices means fewer walks 

Appears to be good approximation for portion of total walks 

Future plans for pass-the-hash 

How does the graph spectrum change when you take repeated minors? 

Minors in directed graphs 

Can we use minors to approximate all pairs shortest paths? 

Make symbolic adjacency matrix less memory intensive 

General graph signature plans 

Goal to generalize the process of finding graph-based signatures 

Looking for more applications and we are on the lookout for data! 
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