
Large Scale Graph Analytics and

Randomized Algorithms for Applications

in Cybersecurity

EMILIE HOGAN, JOHN R. JOHNSON*, MAHANTESH HALAPPANAVAR

Pacific Northwest National Laboratory

SIAM CSE February, 2013

Outline

Problem statement

“Pass the hash”

Network model

Our questions and goals

Matrix sparsification

Graph Minors

Performance

January 9, 2013 2

Outline

Problem statement

“Pass the hash”

Network model

Our questions and goals

Matrix sparsification

Graph Minors

Performance

February 26, 2013 3

“Pass the Hash” Hacking Technique

Adversaries enter a network and

obtain local administrator (LA)

status on a computer.

Can access the credential store

(CS) and steal any credentials

left on the computer.

Use stolen credentials to log into

other computers with LA status.

Repeat until they obtain a high

enough credential to log into any

computer in the network and

control it (domain controller).

June 28, 2012 4

6

7

8

9

7

8

5

8

5

4

2

5

1

6

1

2

1

1

LA

CS

Maintaining a Network

Given a snapshot in time of a

computer network including local

administrator and credential

store data

What are all the paths an

adversary could take?

Can we quantify the risk level of

the network?

Given a stream of network data

Answer the above questions in

real-time

Identify adversaries as they

make their attack

June 28, 2012 5

Network model and questions

Model network as a graph

Vertices are IP addresses

Detection graph

Edges indicate when an event takes place

Reachability graph

Edges indicate common credential between two computers

For a given set of credentials, what are all the paths that could lead to that credential

Constraints on the graph require the communicating system to use a credential that has local

administrator privilege on the target machine

Static graph

Take all data from a time period (e.g., one day) and look at that graph

Evolving graph

As events occur edges are created

When credentials expire the edge is removed

Risk metric / Cross section

For a randomly selected node in the network, what is the probability having a path to a certain

credential?

How does this number change over time (i.e. as hashes expire in the credential store, and new

credentials are deposited?

Can signatures of path traversal along the reachability graph be detected in

existing data?

February 26, 2013 6

What we are looking for

Find paths from outside a network to high level computer

Too many paths = network at risk

How to find paths

Use graph adjacency matrix, ὃ

ὃ counts walks of length Ὧ between all pairs of vertices

February 26, 2013 7

═▓ counts walks of length ▓ in the graph

February 26, 2013 8

Number of walks of length Ὧ ρ from Ὥ to Љ (ύȟЉ) times number of edges from Љ to Ὦ
(ὥЉȟ) yields the number of walks of length Ὧ from Ὥ to Ὦ in which the second to last

vertex in the walk is Љ.

ὃ
ȟ

ύȟ ύȟ Ễ ύȟ
ύȟ ύȟ Ễ ύȟ
ể ể Ệ ể
ύȟ ύȟ Ễ ύȟ

ẗ

ὥȟ ὥȟ Ễ ὥȟ
ὥȟ ὥȟ Ễ ὥȟ
ể ể Ệ ể
ὥȟ ὥȟ Ễ ὥȟ

ȟ

 ύȟ ύȟ Ễ ύȟ ẗ

ὥȟ
ὥȟ
ể
ὥȟ

ύȟὥȟ ύȟὥȟ Ễ ύȟὥȟ

ύȟЉὥЉȟ
Љ

ὃ

What we are looking for

Find paths from outside a network to high level computer

Too many paths = network at risk

How to find paths

Use graph adjacency matrix, ὃ

ὃ counts walks of length Ὧ between all pairs of vertices

Use symbolic adjacency matrix:

Then Ὓ keeps track of what the walks are

ὡ Ὃ В ὃ is a matrix which counts walks of length Ὧ (recall for

later)

В Ὓ keeps track of the walks of length Ὧ

Takes up a lot of memory

February 26, 2013 9

Ὓ ίȟ where ίȟ
ὼȟ ὭὪ ὭȟὮ Ὥί ὥὲ ὩὨὫὩ

π έὸὬὩὶύὭίὩ

otherwise

is an edge if

Our data

Have network traffic data in the form of Windows event logs

Source IP

Host IP

Event ID (logon, logoff, error, password change, …)

Timestamp

Username

Etc.

One day of network data

Nodes – |V| = 4,661

Including perimeter data can introduce millions of vertices

Edges – |E| = 15,466

Began with 4,433,142 events and threw away parallel edges

Average degree = 6.6

Network diameter = 7

February 26, 2013 10

Clustering coefficient, average/max out

degree, and diameter

February 26, 2013 11

Clustering coefficient vs. Number of

vertices

February 26, 2013 12

Thanksgiving

Outline

Problem statement

“Pass the hash”

Network model

Our questions and goals

Matrix sparsification

Graph Minors

Performance

February 26, 2013 13

Matrix Sparsification – version 1

Input

ὃᶰᴙ ȟὄᶰᴙ , constant ρ ὧ ὲ, probability distribution ὴ

Output

ὅᶰᴙ (columns selected from ὃ), Ὑᶰᴙ (rows selected from ὄ)

Procedure

For ὸ ρȟȣȟὧ choose Ὥᶰρȟȣȟὲ with probability ὖὭ Ὧ ὴ

independently with replacement

Let ὅȟ
ȟ

 for Ὦ ρȟȣȟά and Ὑȟ

ȟ

 for Ὧ ρȟȣȟὴ

Column ὸ of ὅ is multiple of column Ὥ of ὃ, row ὸ of Ὑ is multiple of row Ὥ of ὄ

Assuming we chose good ὴ, the resulting ὅẗὙ can provide a good

approximation for ὃẗὄ

February 26, 2013
Drineas, Petros; Kannan, Ravi; and Mahoney, Michael W.: (2006) Fast Monte Carlo Algorithms for

Matrices I: Approximating Matrix Multiplication, SIAM Journal on Computing, vol. 36(1): pp. 132 – 157
14

Matrix Sparsification – version 1 (cont.)

Approximating ὃẗὄ with ὅẗὙ

Assuming nearly optimal probabilities (‍ depends on ὴ)

For ‏ᶰ πȟρȟ– ρ ÌÏÇ then with probability ρ :‏

Using matrix sparsification technique won’t allow for approximating

odd matrix powers

If ὃ ὄ is ὲ ὲ then ὅ is ὲ ὧ, and Ὑ is ὧ ὲ

ὅẗὙ is ὲ ὲ, but multiplying again by ὅ yields an ὲ ὧ matrix

February 26, 2013 15

ὃὄ ὅὙ
ρ

‍ὧ
ὃ ὄ

ὃὄ ὅὙ
–

‍ὧ
ὃ ὄ

Matrix Sparsification – version 2

Input

ὃᶰᴙ ȟὄᶰᴙ , constant ρ ὧ ὲ, probability distributions ὴ
ȟ

ȟ

and ή
ȟ

ȟ

Output

Ὓɴ ᴙ , Ὑᶰᴙ

Procedure

Select elements from ὃ using probability distribution ὴ (elements of Ὓ are

either ὃ Ⱦὴ or π)

Select elements from ὄ using probability distribution ή (elements of Ὑ are

either ὄȾή or π)

This is equivalent to throwing away edges of a graph Ὃ whose

adjacency matrix is ὃ ὄ and then reweighting those edges that

remain.

Removes some paths of interest

February 26, 2013 16

Outline

Problem statement

“Pass the hash”

Network model

Our questions and goals

Matrix sparsification

Graph Minors

Performance

January 9, 2013 17

Graph Minors

Given a graph, Ὃ, and a pair of adjacent vertices, όȟὺᶰὠὋ , we form

the minor, Ὃ ȟ , by

Removing όȟὺ from the vertex set

Adding new vertex όὺ

Replacing all edges ὼȟό and ώȟὺ where ὼȟώ όȟὺ with ὼȟόὺȟώȟόὺ

Do not create loop, i.e., όὺȟόὺɵ ὉὋ ȟ

In undirected graph, paths are preserved under minor operation

Lose information about two vertices after each minor operation

February 26, 2013 18

ό

ὺ

όὺ όὺ
or

Relationship to coarsening

Similar to the strict aggregation (SAG) scheme for multilevel graph

partitioning

Vertices partitioned into disjoint groups based on edge weights within and

between partitions

All vertices in partition contracted into a single vertex

We contract one edge at a time

February 26, 2013
 Chevallier, Cédric; and Safro, Ilya. Comparison of coarsening schemes for multilevel graph partitioning. In Thomas Stützle, editor,

Learning and Intelligent Optimization, volume 5851 of Lecture Notes in Computer Science, pages 191–205. Springer-Verlag, 2009.
19

Representation of SAG scheme from Chevallier, Safro 2009

“Sparse” minors

Goal is to get smaller adjacency matrix and use well known dense

matrix multiply algorithms

Find “sparse pair” of adjacent vertices to contract

Vertices όȟὺ such that ὨὩὫό ὨὩὫὺ is small and όȟὺᶰὉὋ

Do ὓ edge contractions to yield graph Ὃ with adjacency matrix ὃ

February 26, 2013 20

ὃ
ὃᴂ

ὥȟ
ể
ὥȟ

ὥȟ
ể
ὥȟ

ὥȟ Ễ ὥȟ
ὥȟ Ễ ὥȟ

π
ρ

ρ
π

ὃ ȟ ὃ

ὥȟ ὥȟ
ể

ὥȟ ὥȟ
ὥȟ ὥȟ Ễ ὥȟ ὥȟ π

Here can
replace “+”
with “max”

Outline

Problem statement

“Pass the hash”

Network model

Our questions and goals

Matrix sparsification

Graph Minors

Performance

January 9, 2013 21

Measures of accuracy

After taking minors, compute ὡ Ὃ and ὡ Ὃ

There is a set of vertices, ὠ , that are common to both Ὃ and Ὃ

Vertices in Ὃ which were not removed by an edge contraction

Vertices in Ὃ which were not created as a result of an edge contraction

Compare sub-matrices restricted only to the vertices in ὠ

Define

The ὭȟὮ entry of Ὀȟ is the number of walks of length Ὧ from Ὥ to Ὦ in

Ὃ as a percentage of the total number of walks of length Ὧ minus the

same quantity for Ὃ .

ẗ the ὒ norm of the matrix (the sum of its entries)

February 26, 2013 22

Ὀȟȡ
ὡ Ὃ

ὡ Ὃ

ὡ Ὃ

ὡ Ὃ

Data

23

Average of the absolute values of the entries of Ὀ ȟ ,
with ά ςπȟτπȟȣȟτψπ, for an Erdős-Rényi (ὴ πȢυ)
and scale-free random graph with ὠ ρπππ.

Average of the absolute values of the entries of Ὀ ȟ ,
with ὓ ρππȟςππȟȣȟὠ ςϳ , for randomly chosen
induced subgraphs of our cybersecurity graphs with ὠ
values as indicated.

sc
a

le-
fr

e
e

E
rd
ő
s-

R
é

n
yi

Observations and Future work

Performance of minors algorithm

Poor performance on full comparison – total number of walks

Fewer vertices means fewer walks

Appears to be good approximation for portion of total walks

Future plans for pass-the-hash

How does the graph spectrum change when you take repeated minors?

Minors in directed graphs

Can we use minors to approximate all pairs shortest paths?

Make symbolic adjacency matrix less memory intensive

General graph signature plans

Goal to generalize the process of finding graph-based signatures

Looking for more applications and we are on the lookout for data!

February 26, 2013 24

Acknowledgements

GRADIENT team

Daniel Best, Satish Chikkagoudar, Sutanay Choudhury, Glenn Fink,

Mahantesh Halappanavar, Peter Hui, John Johnson, Chaomei Lo, Bill

Nickless, Bryan Olsen, and Elena Peterson

Nathan Baker – SDI lead

George Bonheyo – Dynamics and Detection Area lead

February 26, 2013 25

