Multi-layer, Time-varying Brain Networks: Community Structure and Network Flexibility
SIAM CSE – March 1, 2017

Richard Betzel PhD
Department of Bioengineering
University of Pennsylvania, Philadelphia, PA 19143
rbetzel@seas.upenn.edu
@richardfbetzel
Neural systems are complex networks

Inherently multiscale:
- Micro (neurons, synapses)
- Macro (regions, projections)

Multiple modes of coupling
- Anatomical (physical projections)
- Functional (dynamic interactions)

Mouse visual cortex
Andreas Burkhalter (WUSTL)

Diffusion imaging/tractography
Patric Hagmann (EPFL)

Resting-state fMRI
Michael Fox, Marc Raichle (WUSTL)

Constructing Brain Networks

1. Histological or imaging data
2. Anatomical parcellation
3. Recording sites
4. Time series data

- Structural brain network
- Functional brain network
- Network analysis

Time-varying functional brain networks

- Neural processes play out at a sub-second scale.
- Cognitive processes at timescales shorter than that of an entire scan session.

Multi-layer network model

How to analyze a set of networks?

1. Treat each observation as a **layer**.
2. Link each node to itself (identity links) across layers to form a **multi-layer network**.

Multi-layer network model in neuroscience

Multi-frequency networks: Layers represent frequency-specific FC

Multi-frequency networks: Interlayer links represent cross-frequency coupling patterns.

Multi-modal networks: Layers represent different imaging modalities, e.g. fMRI and dMRI
Community detection algorithms partition network nodes based on topology:

\[Q = A_{ij} - P_{ij}(g_i, g_j) \]

Extended to multi-layer networks (Mucha et al 2011, Science)

Flexibility measures the frequency with which a node changes its community assignment across layers.

Network flexibility in learning, executive function, disease

Flexibility predicts:
- Executive function (Braun et al 2015, PNAS)
- Varies with disease (Braun et al 2015, PNAS)
- Varies with age (Betzel et al 2015, arXiv)
- Learning rate (Basset et al 2011, PNAS; Basset et al 2015, NatNeuro)

- Varies day to day
- Associated with cognitive performance
- What exogenous factors influence flexibility?
MyConnectome Project

- Analyze resting fMRI and questionnaire data separately.
- Estimate network flexibility and test for affect-based correlates.

Russ Poldrack

Quotidian variability in mood questionnaire responses

- 60 questions about mood (PANAS-X)
Analysis of resting fMRI data

Analyze 73 recording sessions.
1. Extract fMRI BOLD time series from 630 parcels
2. Divide into 14 non-overlapping windows (37 TR)
3. Construct wavelet coherence matrices within each window
4. Identify communities using multi-layer modularity maximization
5. Compute regional and global flexibility
Quotidian variability in regional flexibility

Across scan sessions...

Mean regional flexibility

St. dev. regional flexibility

Quotidian variability in regional and global flexibility

Are flexibility patterns uniform or region/system specific?

- Fronto-parietal, somatomotor, visual networks least flexible
- Somatomotor and visual networks most variable across sessions

Test linear relationship of mood indices with **global flexibility** (regional average).

- Self reported positivity implies increased network flexibility
- Self reported surprise implies decreased network flexibility
Relating mood indices to flexibility

Relationship is driven by the **regional flexibility** of somatomotor network.
Relating mood indices to flexibility

Possible confounds:
- In-scanner head motion
- Outlying scans/responses
- Non-parametric correlations
- Other psycho-physiological measurements (e.g. sleep, diet, tinnitus, weather)
- Frequency-band specific
- Community detection parameters
- Window length

Self-reported fatigue, however, was correlated with positivity but not surprise.
Summary and outlook

Interested in whether day-to-day variation in flexibility could be explained by behavior/lifestyle.

Remember… N = 1

- Suggests a network-level correlate of positive affect and surprise (state of arousal?)

- Flexibility has been associated with NMDA receptor function – suggests pharmacological pathway for modulating mood.

- Flexibility has been associated with learning – suggests that alterations to mood/fatigue/surprise can enhance learning.

Remember… N = 1
Acknowledgements

Prof. Danielle Bassett
(Penn)

Prof. Ted Satterthwaite
(Penn)

Prof. Ian Gold
(Penn)