Dynamic Networks of Microbial Biofilms

Radu Marculescu and Chieh Lo
Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA, USA

Big problem: Antibiotic resistance

WHO 2014 report reveals that antibiotic resistance is no longer a prediction for the future; it is happening right now
Bacteria bring together computation, communication, and control

This presentation puts the “network” at very center of this socio-microbiological perspective on pathogens

Intra-cellular networks
Quorum sensing modeling

Inter-cellular networks
Biofilm dynamics

Understanding and engineering “Molecular Tweeting” could hold the key to busting superbugs
What is quorum sensing (QS)?

- Bacteria use quorum sensing (QS) to monitor the environment and regulate their collective behaviors
 - Biofilm formation
 - Virulence expression

https://www.youtube.com/watch?v=be-mjOGi6qu

How to model QS?

LuxR-AI dynamics

\[\frac{[C]}{dt} = \alpha [R][A] - \delta [C] \]

QS upregulates multiple virulence genes

\[\frac{[A]}{dt} = -\alpha [R][A] + \delta [C] - b[R] + \frac{V[C]}{K + [C]} + r + \frac{d}{\rho} ([A_E] - [A]) \]

\[\frac{[A_E]}{dt} = -d([A_E] - [A]) - b[A_E] \]

Gram-negative bacteria use largely homologous QS networks, where the AIs are detected and regulated via genetic circuits
Bacterial population dynamics is a complex problem. Direct wet-lab experimentation is costly and often impractical.

Experimenting with efficient GPU kernels using NVIDIA Thrust allows to achieve 100x acceleration with GTX980 GPUs.

This presentation puts the “network” at very center of this socio-microbiological perspective on pathogens.

Intra-cellular networks
Quorum sensing modeling

Inter-cellular networks
Biofilm dynamics

Applications
Network control

Understanding and engineering “Molecular Tweeting” could hold the key to busting superbugs.
Bacterial biofilm: Use Twitter-like metaphor to explain participants and network formation

(a) Intracellular network
(b) Intercellular network
(c) EPS/Virulence
(d) Signal molecule (molecular tweet)

@bacteria: generate public goods (EPS) or virulence

The structure and dynamics of the inter-cellular communication network is heavily influenced by its environment

Network formulation is based on the QS activity

\[S_{ij} = Q \frac{I_{ij}}{\max(I)} \]

\[R_{ij} = \frac{\log(S_{ij})}{D} \]
Network metrics

- **Clustering coefficient**: Measures the degree to which network nodes are clustered together. A high clustering coefficient means that the network nodes are not only highly active but also in close proximity to one another.

- **Communities**: Groups of nodes with high clustering coefficient. If the two cell groups have a large impact on one another (e.g., gene expression synchronization), then they are considered to belong to the same community.

Pure wild type (WT): All bacteria tweet and retweet the message of producing EPS

(300x300x500μm³)
Red: WT
Green: EPS
1/3WT, 1/3SB, 1/3SN: Bacteria communication enables social intelligence (“molecular tweeting”)

Dynamics of network evolution

- Biofilm Max Thickness
- Biofilm Roughness
- Number of Communities
- Network Diameter
- Clustering Coefficient
- Number of Links
- Wild-type %
- Networked Cells %
Do bacteria have a social life?

<table>
<thead>
<tr>
<th>Category</th>
<th>Network</th>
<th>Type</th>
<th>Nodes</th>
<th>Links</th>
<th>Degree_avg</th>
<th>PathLength_avg</th>
<th>Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social</td>
<td>Film actors</td>
<td>Undirected</td>
<td>449,913</td>
<td>25,516,482</td>
<td>113.43</td>
<td>3.48</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Math coauthorship</td>
<td>Undirected</td>
<td>255,339</td>
<td>496,489</td>
<td>3.92</td>
<td>7.57</td>
<td>0.15</td>
</tr>
<tr>
<td>Biological</td>
<td>Protein interactions</td>
<td>Undirected</td>
<td>2,115</td>
<td>2,240</td>
<td>2.12</td>
<td>6.80</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Neural network</td>
<td>Directed</td>
<td>307</td>
<td>3,350</td>
<td>7.68</td>
<td>3.97</td>
<td>0.18</td>
</tr>
<tr>
<td>Technological</td>
<td>Internet</td>
<td>Undirected</td>
<td>10,697</td>
<td>31,992</td>
<td>5.98</td>
<td>3.31</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Power grid</td>
<td>Undirected</td>
<td>4,941</td>
<td>6,594</td>
<td>2.67</td>
<td>18.99</td>
<td>0.10</td>
</tr>
<tr>
<td>Social Biology</td>
<td>Bacteria society (S1)</td>
<td>Directed</td>
<td>24,244</td>
<td>880,225</td>
<td>36.31</td>
<td>12.54</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Bacteria society (S2)</td>
<td>Directed</td>
<td>16,254</td>
<td>496,511</td>
<td>30.55</td>
<td>8.56</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>Bacteria society (S3)</td>
<td>Directed</td>
<td>10,906</td>
<td>384,371</td>
<td>39.78</td>
<td>9.84</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Bacteria society (S4)</td>
<td>Directed</td>
<td>12,920</td>
<td>307,469</td>
<td>25.15</td>
<td>6.74</td>
<td>0.53</td>
</tr>
</tbody>
</table>

This presentation puts the “network” at very center of this socio-microbiological perspective on pathogens

- **Intra-cellular networks**
 - Quorum sensing modeling

- **Inter-cellular networks**
 - Biofilm dynamics

Understanding and engineering “Molecular Tweeting” could hold the key to busting superbugs
Effect of QSIs

QSI1: targeting LasR receptor
C-30 furanone (Al analog)

QSIs can effectively reduce the virulence

Consider only wild type cells

QSI1 targets LasR
QSI2 targets AI
QSI3 targets the gene which produces LasR
QSI strategies

Day 1
QSI1: signal reception

Day 5
QSI2: signal accumulation

Day 10
QSI3: signal generation

QSI combined

Summary

Intra-cellular networks
Quorum sensing modeling

Inter-cellular networks
Biofilm dynamics

Applications
Network control

Contributors (in no particular order...)
R. Marculescu, G. Wei (CMU), R. Kim (CMU), C. Walsh (CMU), W. Ehrett (CMU), G. Carvajal (CMU), L. Hiller (CMU).

More info: www.ece.cmu.edu/~sld