
High-Performance Graph Traversal for

De Bruijn Graph-Based

Metagenome Assembly

Vasudevan Rengasamy Kamesh Madduri

School of EECS

The Pennsylvania State University

{vxr162, madduri}@psu.edu

SIAM CSE 2017

1 / 32

Overview

Introduction

METAPREP overview

Experiments and Results

Parallel Scaling

Comparison to prior work

Metagenome assembly results

Conclusions and Future work

2 / 32

What is de novo genome assembly?

Genome

De novo Assembly
software
SOAPDenovo, Minia, Velvet ...

Read

Contig

ATCGGAGCATCGA

ATCGAAGCATCGA

3 / 32

What is metagenome assembly?

Multiple genomes

Metagenome
Assembly tools
Megahit, MetaVelvet,
Meta-IDBA

Assembled genomes

4 / 32

What is a de Bruijn graph?

Read: AACTAA

AAC ACT CTA TAA

De Bruijn Graph

K-mer (k=3)

5 / 32

What is a de Bruijn graph?

Reads: AACTAA, TAAGCG, AGCACC

AAC ACT CTA TAA

AAG AGC GCG

GCA CAC ACC

De Bruijn Graph (k=3)

6 / 32

How is it used in assembly?

AAC ACT CTA TAA

AAG AGC GCG

GCA CAC ACC

De Bruijn Graph (k=3)

I Concatenate k-mer strings in each path.
I Assembled string: AACTAAGCACC.

7 / 32

Challenges in metagenome assembly

1. Uneven coverage of genomes.

2. Repeated sequences across genomes.

3. Variable sizes of genomes.

4. Large dataset sizes (as the output from multiple

sequencing runs may be merged).

Metagenome assembly tools (MEGAHIT, MetaVelvet,

metaSPAdes, etc.) attempt to overcome these challenges.

8 / 32

MEGAHIT [Li2016] metagenome assembler

I State-of-the-art metagenome assembler.

I Uses a highly compressed de Bruijn graph representation.

I Refines assembly quality by using multiple k-mer lengths.
I Supports single-node shared memory parallelism (both

CPUs and GPUs).

9 / 32

A preprocessing strategy for Metagenome assembly

1. After filtering low frequency k-mers, partition de Bruijn
graph into weakly connected components (WCCs).

2. Assemble each large component independently.

3. Introduced by Howe et al. [Howe2014].

10 / 32

Recent work on metagenome partitioning [Flick2015]

I Construct an undirected read graph instead of a de Bruijn
graph.

I Find connected components in the read graph using a

distributed memory parallel approach based on

Shiloach-Vishkin algorithm.

I Read graph components correspond to de Bruijn graph

WCCs.

TAACGACC

AACGACCT

ACTCAAAT

CTCAACGA

R0:

R1:

R2:

R3:

11 / 32

Motivation for our work

I Can we improve on [Flick2015] approach?

I How does read graph partitioning impact assembly?

12 / 32

Our approach

I NewMetagenome Preprocessing tool METAPREP.
I Main memory use is parameterized.

I Multipass approach: Only enumerate a subset of k-mers in
each pass.

I e.g., 10 passes⇒ 10×memory reduction.
I Only one inter-node communication phase in our

distributed memory connected components.

13 / 32

METAPREP overview

METAPREP step Function

IndexCreate Create index files for parallel

runs.

1 KmerGen Enumerate 〈k-mer, readi〉 tu-
ples.

2 KmerGen-Comm Transfer 〈k-mer, readi〉 tuples
to owner tasks.

3 LocalSort Sort tuples by k-mers.
4 LocalCC Identify connected compo-

nents (CCs).

5 MergeCC Merge components across

tasks, create output FASTQ

file with reads from largest

CC.

Input:
FASTQ
files

KmerHist

FASTQPart

LocalSort

LocalCC

MergeCC

Output:
FASTQ
files

KmerGen

KmerGen-Comm

M
ul

tip
le

 P
as

se
s

IndexCreate

14 / 32

A simple strategy for static work partitioning

I Precompute anm-mer histogram (m� k, defaults arek = 27,m = 10)

I Used to partition k-mers across MPI tasks and threads in a
load balanced manner.

15 / 32

Notation

Notation Description

M Total number of k-mers enumeratedR Paired-end read count

S Number of I/O passesP Number of MPI tasksT Number of threads per task

16 / 32

k-mer Enumeration
I Generate 〈k-mer, read_id〉 tuples.
I Threads add k-mers to a common buffer. Offsets
precomputed.

I Output: a buffer on each MPI task.

I k-mers are partially sorted.
I Time: O(MSPT), Space: 24MSP bytes.

... ...

To MPI Task 1

Send Buffer at MPI task i

Thread 1 offset Thread T offset

To MPI Task P

17 / 32

Sort by k-mer
I Sort tuples by k-mer value to identify reads with commonk-mer and create read graph edges.
I Radix sort implementation.

I Reuse send buffer⇒ No additional memory .
I Partition tuples into T disjoint ranges.

I Sort ranges in parallel using T threads.

I Time: O(MPT), Space: 24MSP bytes.

18 / 32

Identify connected components

I Find connected components using edges from localk-mers.
I Union-by-index and path splitting.

I No critical sections.

I Store edges that merges components (similar to

[Patwary2012]).

I Process edges again in case of lost updates.

I Time: O(MPT log∗R), Space: 12MSP + 4R bytes.

19 / 32

Merge components

I Merge component forests in each MPI task in log P
iterations.

I Time: O(R log P log∗R), Space: 8R bytes.

R1

R2

R4
R1

R3

R4

P0 P1

R3 R2

R1

R2

R4

P0

R3

R1

R2

R4
R1

R3

R4

P2 P3

R3 R2

R1

R2

R4

P2

R3

R1

R2

R4

P0

R3

0:

1:

2:

20 / 32

Experiments and Results

Description of datasets

Read Count Size
Dataset R (×106) (Gbp)

Source

Human

metagenome

67.6 6.75 NCBI (SRR1804155)

Iowa, Continuous

corn soil

1132.8 112.0 JGI (402461)

Machine configuration

I Edison supercomputer at NERSC.

I Each node has 2× 12-core Ivy bridge processors and 64 GB
DDR3 memory.

21 / 32

Single node scaling for Human Metagenome Dataset

1 2 4 8 12 24

Threads

0

500

1000

1500

2000

2500

T
im

e
(s

e
co

n
d
s)

KmerGen-I/O

KmerGen

LocalSort

LocalCC-Opt

CC-I/O

Speedup

5

10

15

20

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Execution using 4 I/O passes.

22 / 32

Multi-node scaling for Human Metagenome Dataset

1 2 4 8 16

Nodes

0

50

100

150

200

T
im

e
(s

e
co

n
d
s)

KmerGen-I/O

KmerGen

KmerGen-Comm

LocalSort

LocalCC-Opt

Merge-Comm

MergeCC

CC-I/O

Speedup

2

4

6

8

10

12

14

16

R
e
la

ti
v
e
 S

p
e
e
d
u
p

23 / 32

Multi-node scaling for Iowa Continuous Soil Dataset

16 64

Nodes

0

100

200

300

400

500

600

700

800

900
T
im

e
(s

e
co

n
d
s)

3.25X

1X
KmerGen-I/O

KmerGen

KmerGen-Comm

LocalSort

LocalCC-Opt

Merge-Comm

MergeCC

CC-I/O

For 16 node run, Number of passes = 8. For 64 node run,

Number of passes = 2.

24 / 32

Comparison with read graph connectivity [Flick2015]

Table 1: Comparison for Human metagenome. AP_LB (Active

Partitions with Load balancing) denotes read graph connectivity

work [Flick2015]

Step
METAPREP AP_LB

(seconds) (seconds)

Communication 5.1 24.6

Sort tuples 4.5 40.4

Read graph partitioning 7.0

Total 16.6 69.0

I 4.15× speedup over AP_LB on 16 nodes.
I 21 CC iterations for AP_LB vs 4 for METAPREP.

25 / 32

MEGAHIT [Li2016] assembly time vs METAPREP time

Soil
Peru

HumanGut Soil
Iowa

Lake
Lanier

Mock Human
Metagenome

Dataset

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 (

se
co

n
d
s)

MEGAHIT

MetaPrep

I Preprocessing time (MetaPrep)� Assembly time.
I Many metagenome datasets have a single giant

component.

26 / 32

Conclusions

1. Developed a new memory efficient parallel workflow for

partitioning metagenome dataset into connected

components.

2. Speedup of 4.15× over AP_LB approach by [Flick2015].
3. We can process a metagenome dataset with 1.13 billion

reads (Iowa continuous corn soil) in 14 minutes using 16

nodes of Edison.

4. Preprocessing time (MetaPrep)� Assembly time.

27 / 32

Future Work

1. For most datasets, we observe creation of a single large

connected component after partitioning the read graph.

I Can we split this giant component using k-mer frequency
information in a principled manner?

2. Reduce data exchanged in the inter-node communication

step of connected components.

28 / 32

Acknowledgment

This research is supported in part by NSF award #1439057. This

research used resources of the National Energy Research

Scientific Computing Center, a DOE Office of Science User

Facility supported by the Office of Science of the U.S.

Department of Energy under Contract No.

DE-AC02-05CH11231.

29 / 32

References I

Patrick Flick, Chirag Jain, Tony Pan, and Srinivas Aluru.

A parallel connectivity algorithm for de Bruijn graphs in

metagenomic applications.

In Proc. Int’l. Conf. for High Performance Computing,Networking, Storage and Analysis (SC), 2015.
Adina Chuang Howe, Janet K. Jansson, Stephanie A. Malfatti,

Susannah G. Tringe, James M. Tiedje, and C. Titus Brown.

Tackling soil diversity with the assembly of large, complex

metagenomes.Proceedings of the National Academy of Sciences,
111(13):4904–4909, 2014.

30 / 32

References II

Dinghua Li, Ruibang Luo, Chi-Man Liu, Chi-Ming Leung,

Hing-Fung Ting, Kunihiko Sadakane, Hiroshi Yamashita, and

Tak-Wah Lam.

MEGAHIT v1.0: A fast and scalable metagenome assembler

driven by advanced methodologies and community

practices.Methods, 102:3–11, 2016.
Md Mostofa Ali Patwary, Peder Refsnes, and Fredrik Manne.

Multi-core spanning forest algorithms using the disjoint-set

data structure.

In Proc. IEEE Int’l. Parallel & Distributed Processing Symposium(IPDPS), 2012.

31 / 32

Thank You

32 / 32

	Introduction
	MetaPrep overview
	Experiments and Results
	Parallel Scaling
	Comparison to prior work
	Metagenome assembly results

	Conclusions and Future work

